
Master Thesis

Software Engineering

Thesis no: MSE-2007:18

June 2007

School of Engineering

Blekinge Institute of Technology

Box 520

SE – 372 25 Ronneby

Sweden

An automated testing strategy targeted for

efficient use in the consulting domain

Teddie Stenvi

 ii

Master Thesis

Software Engineering

Thesis no: MSE-2007-xx

Month Year

School of Engineering

Blekinge Institute of Technology

Box 520

SE – 372 25 Ronneby

Sweden

This thesis is submitted to the School of Engineering at Blekinge Institute of Technology in

partial fulfillment of the requirements for the degree of Master of Science in Software

Engineering. The thesis is equivalent to 20 weeks of full time studies.

Contact Information:
Author(s):

Teddie Stenvi
Address: Jaktstigen 18

22652 Lund

E-mail: teddie@stenvi.se

External advisor(s):

Per Sigurdson

Testway AB

Address:
Hans Michelsengatan 9

211 20 Malmö

University advisor(s):

Dr. Robert Feldt

Department of Systems and Software Engineering

School of Engineering

Blekinge Institute of Technology

Box 520

SE – 372 25 Ronneby

Sweden

Internet : www.bth.se/tek

Phone : +46 457 38 50 00

Fax : + 46 457 271 25

 1

ABSTRACT

Test automation can decrease release cycle time for

software systems compared to manual test execution.

Manual test execution is also considered inefficient and

error-prone. However, few companies have gotten far

within the field of test automation. This thesis

investigates how testing and test automation is

conducted in a test consulting setting. It has been

recognized that low test process maturity is common in

customer projects and this has led to equally low system

testability and stability. The study started with a

literature survey which summarized the current state

within the field of automated testing. This was followed

by a consulting case study. In the case study it was

investigated how the identified test process maturity

problems affect the test consulting services. The

consulting automated testing strategy (CATS) been

developed to meet the current identified challenges in

the domain. Customer guidelines which aim to increase

the test process maturity in the customer organization

have also been developed as a support to the strategy.

Furthermore, the study has included both industrial and

academic validation which has been conducted through

interviews with consultant practitioners and researchers.

Keywords: Consulting, Testing, Requirements, Process

Improvement.

 2

TABLE OF CONTENTS
ABSTRACT .. 1

TABLE OF CONTENTS ... 2

1 INTRODUCTION ... 5

1.1 BACKGROUND.. 5
1.2 AIMS AND OBJECTIVES ... 6
1.3 RESEARCH QUESTIONS ... 6
1.4 RESEARCH METHODOLOGY .. 7
1.5 THESIS OUTLINE ... 7

2 AUTOMATED SOFTWARE TESTING ... 9

2.1 SOFTWARE TESTING IN GENERAL ... 9
2.1.1 Black-box testing .. 10
2.1.2 White-box testing .. 10
2.1.3 Grey-box testing .. 11

2.2 TEST LEVELS .. 11
2.2.1 Unit testing.. 12
2.2.2 Integration testing ... 13
2.2.3 System testing .. 13
2.2.4 Acceptance testing .. 14

2.3 VERIFICATION-ORIENTED DEVELOPMENT METHODS .. 14
2.3.1 Test-driven development ... 15

2.3.1.1 Extreme programming ... 16
2.3.2 Behaviour driven development ... 17

2.4 AUTOMATED TESTING OPPORTUNITIES .. 18
2.4.1 Reuse ... 19
2.4.2 Regression testing ... 19
2.4.3 Coverage issues .. 20
2.4.4 Test selection .. 21
2.4.5 Test data generation ... 22
2.4.6 Test analysis.. 23
2.4.7 Testability ... 23
2.4.8 Test strategy .. 24

2.5 RELEVANT METHODS, APPROACHES AND STRATEGIES ... 24
2.5.1 Directed Automated Random Testing ... 25
2.5.2 Structurally guided black box testing.. 26
2.5.3 A framework for practical, automated black-box testing of component-based software 26
2.5.4 Korat: Automated Testing Based on Java Predicates ... 27
2.5.5 Feedback-directed Random Test Generation.. 28
2.5.6 Systematic Method Tailoring .. 29
2.5.7 JUnit ... 29
2.5.8 JBehave ... 31

3 METHODOLOGY .. 33

3.1 OVERVIEW ... 33
3.2 LITERATURE STUDY ... 34
3.3 CONSULTING STUDY .. 35
3.4 STRATEGY DEVELOPMENT ... 36
3.5 ACADEMIC VALIDATION .. 37

4 TEST CONSULTING ... 38

4.1 INTRODUCTION .. 38
4.1.1 Overview ... 38
4.1.2 Role of the consultant ... 39

4.2 DIFFERENCES BETWEEN CONSULTING AND STANDARD DEVELOPMENT 39
4.2.1 Development differences between consulting firms and their customers 39

 3

4.2.2 Testing differences between consulting firms and their customers 40
4.2.3 Gap between consulting and reviewed research ... 40

4.3 CONSULTING AT TESTWAY .. 40
4.3.1 Current state ... 42
4.3.2 Test levels.. 42
4.3.3 Reuse challenges ... 43
4.3.4 Customer development issues ... 43
4.3.5 Automated testing ... 44

5 CONSULTING AUTOMATED TESTING STRATEGY (CATS) .. 46

5.1 OVERVIEW ... 46
5.1.1 Strategy concepts .. 46
5.1.2 Strategy scope ... 46
5.1.3 Severity scale .. 46
5.1.4 Automation prioritization scheme ... 47
5.1.5 Motivation statement... 47
5.1.6 Structure of strategy.. 48

5.2 PREPARATION PHASE ... 49
5.2.1 Project testability and stability ... 50
5.2.2 Customer training ... 50
5.2.3 Automated tool selection ... 51

5.3 EXECUTION PHASE ... 52
5.3.1 Test selection .. 53
5.3.2 Metric selection .. 55
5.3.3 Method tailoring ... 57
5.3.4 Test execution and measurement .. 57

5.4 POST EXECUTION PHASE .. 58
5.4.1 Metric evaluation .. 59
5.4.2 Knowledge reuse ... 59
5.4.3 Guideline improvement ... 60

5.5 STRATEGY PITFALLS .. 60
5.5.1 To ambiguous automation .. 60
5.5.2 Low testability ... 60
5.5.3 Selling the guidelines to practitioners .. 60

6 CUSTOMER GUIDELINES .. 62

6.1 INTRODUCTION .. 62
6.1.1 Motivation statement... 62
6.1.2 Guideline concepts .. 62
6.1.3 Prioritization legend ... 63
6.1.4 Pointer table legend .. 64
6.1.5 Structure of guideline pointers.. 64

6.2 REQUIREMENTS ENGINEERING POINTERS ... 64
6.2.1 Requirements elicitation pointers ... 65
6.2.2 Requirements Analysis pointers .. 66
6.2.3 Requirements specification pointers ... 67

6.2.3.1 Development methodology independent pointers .. 67
6.2.3.2 Agile methodology pointers ... 68
6.2.3.3 Plan-driven methodology pointers ... 68

6.3 GENERAL VERIFICATION POINTERS .. 70
6.3.1 Development methodology independent pointers ... 70
6.3.2 Agile methodology pointers .. 71
6.3.3 Plan-driven methodology pointers .. 73

7 DISCUSSION ... 74

7.1 LESSONS LEARNED ... 74
7.1.1 Strategy applicability .. 74
7.1.2 Customer guideline applicability .. 74

7.2 VALIDITY ASSESSMENT .. 75
7.2.1 Credibility ... 75
7.2.2 Transferability .. 75

 4

7.2.3 Dependability .. 76
7.2.4 Confirmability ... 76

7.3 ANSWERING RESEARCH QUESTIONS ... 77
7.3.1 Overview ... 77
7.3.2 Elaborated answers to research questions ... 78

8 CONCLUSIONS .. 80

9 FUTURE WORK ... 81

10 REFERENCES ... 82

11 APPENDIX A – CUSTOMER GUIDELINE CHECKLIST .. 89

 5

1 INTRODUCTION
Software testing is a practice that is neglected in many development projects due to budget

and time constrains. In the test consulting domain, the testers and test managers change

domains frequently due to large sets of customers involved. This chapter will present the

motivation for this thesis project followed by the aims and objectives and research questions.

The research methodology will be briefly introduced followed by an outline for the rest of

the report.

1.1 Background
Executing manual test cases several times is inefficient and error-prone and by automating

these, the tests can be improved in later development phases, resources may be freed and the

release cycle time may be decreased [Keller05]. Acting as a consultant in the test consulting

domain infers some special issues that need to be handled in regards to the automation of the

manual test cases in the customer development projects. The development process maturity

often differ between the customers and with this in mind, the automated test procedures,

methods and approaches used by the consulting firms must be adapted to suit the different

customer domains and the distinct projects within these domains.

If automated testing is not considered in the architecture and design, it will be decrease the

possibilities of automating the test cases in the later phases [Keller05]. This can pose

problems for a test consultant that arrives in late phases of development where these items

are hard to change for the sake of automating the test cases. As mentioned by Keller et al.

[Keller05], the success of the automated tests are dependent on the test automation strategy

that describes which test types that are to be performed, such as for example, integration

tests, reliability tests and functional tests.

There are development methodologies that support automated testing, such as test driven

development. Such practices can in fact reduce the defects in the software products and this

is partly because it enables automated test cases to be written before the actual problem

solution implementation [Williams03]. However, the consulting domain differs from

traditional software development in the sense the consultants arrive in various phases of

development depending on the contract with the given customer. It would hence be an

advantage if the consultant could guide the early development phases in a direction which

would facilitate automated testing in the later phases when the consultant arrives.

With such guidance, executable test frameworks, such as the unit testing framework JUnit

[Noonan02], could be introduced in the early stages of development which could help in the

early detection of defects. This would also facilitate the regression testing that is needed after

a change has been made in the software artefacts which in turn save the effort and cost of

manual re-testing. In many software disciplines, the possibility of artefact reuse is discussed

as a means of decreasing the development costs with the advantage of increased quality in

regards to the iterated improvements made to the reused artefact. Such reuse could be

enabled with the introduction of automated test cases which could be beneficial in the sense

that the consultant could gather a test case collection and thereby bring the test cases from

one customer to another.

Automated testing is not the best verification technique for every single scenario, many other

factors needs to be considered before making the decision to automate the test case such as

what artefact that are to be tested, how many times the test are to be run and how long time it

will take to implement the test suite [Keller05]. However, having them gives the advantage

of being able to run them more frequent and improves the quality of the test cases.

 6

As mentioned, it is very difficult to add automated test cases in late development phases in

projects which have not taken automation into account in the architecture and design. In

traditional software development organisations it would be possible to change the

development method to for example, test-driven development in order to prepare automated

test cases in the early phases. Such change would open up the possibility of introducing

executable test frameworks which in turn could help to find errors in the early stages of

development. As the hired test consultant, this is not possible to the same extent whereas the

consultant often arrives in a phase where the development artefacts have already been

produced which makes it feasible to adapt the traditional automated testing practices to cope

with this situation.

Few of the customers of these consulting firms have gotten far in the field of test automation

which introduces a gap between the state-of-the-art research of test automation and the

industrial implementation of such. This thesis investigates how the traditional automated

testing practices can be adapted in these kinds of situations and also examines if it is possible

to guide the customers, which have not gotten very far in the field of automation, in their

early phases of development in a direction to facilitate automated testing in the phase where

the consultant arrives.

1.2 Aims and objectives
This aim of this thesis project was to report on the difficulties within the test consulting

domain in regards to the automated test methods and processes used. With this information

in mind, an automated testing strategy and customer guidelines has been constructed with the

aim of making these methods and processes more adaptable between different customer

domains. The objectives which were formed prior to the study are primarily described in the

list below:

• Identify which automated testing methods, approaches and strategies that are used in

the consulting domain.

• Identify how these automated testing methods, approaches and strategies differ from

the corresponding ones used by standard development companies and the ones

considered state-of-the-art.

• Construct a theoretical hybrid strategy for automated testing, targeted for efficient

adaptation in the consulting domain, with guidelines for easier adoption.

• Validate the adaptation efficiency of the strategy in the consulting domain.

• Validate the feasibility and cost effectiveness of the proposed strategy in the

consulting domain.

1.3 Research questions
With the aims and objectives in mind, the following set of research questions was

constructed:

RQ1: Which testing methods, approaches and strategies for automated testing are

considered state-of-the-art?

RQ2: What automated testing methods, approaches and strategies are currently used by

testing consulting firms?

RQ3: How do the testing and test processes for consulting firms differ from the

corresponding ones used by traditional software development organisations?

RQ4: What common factors of these can be identified for effective use across different

customer domains?

 7

RQ5: Are there potential for reuse of automated test cases between different testing

consulting clients and domains?

RQ6: What problems exists in regards to testability in customer projects?

RQ7: How can the automated testing methods, approaches and strategies be transformed

and combined in order to be more flexible in the dynamic environments of consulting

firms?

1.4 Research methodology

In order to get a sufficient amount of information, the study has been divided into three main

parts where each will form a part of the report;

• Literature survey.

• Case study.

• Validation.

An extensive literature study has been conducted which was indented for the identification of

which automated testing methods, approaches and practices are considered state-of-the-art.

This study was indented to answer some of the research questions which were directed at the

comparison to the results spawned by the case study.

The industrial case study included interviews, surveys and questionnaires. The interviews of

this case study were performed with company personnel at different levels in the test

consulting organisation. This was done in order to get the views from a tester in a specific

project as well as a test manager which act over several projects. With the combined results

from these activities, sufficient information was acquired for the construction of the strategy

and guidelines.

The last phase of the study was the validation of the strategy and guidelines in the consulting

domain. This validation was performed through interviews with a consultant testers and test

managers of the consulting firm where the industrial case study was performed. Furthermore,

a validation interview was performed with a customer of the consulting firm. These

interviews were conducted in order to assess the estimated efficiency and feasibility of the

strategy in a live consulting setting. Furthermore, an interview with a researcher within

academia was performed in order to assess the academic value of the study.

1.5 Thesis outline
This section provides the chapter outline of the thesis.

Chapter 2 (Automated Software Testing) begins with an introduction to software testing and

basic concepts in Section 2.1 and 2.2. Section 2.3 provides a discussion of verification-

oriented development methodologies. The following section (Section 2.4) discusses

automated testing opportunities in more depth. Section 2.5 concludes the chapter with a

summary and discussion of methods, approaches and strategies that are deemed relevant for

the consulting domain.

Chapter 3 (Methodology) contains a discussion about the study design. The sections in this

chapter contain flowcharts with attached discussions of each activity conducted throughout

the study.

Chapter 4 (Test consulting) introduces the consulting domain in Section 4.1. This is followed

by a discussion of the software development and testing differences between consulting

 8

firms and standard development companies in Section 4.2. A case study has been conducted

at Testway which is a consulting firm in a southern part of Sweden and Section 4.3 describes

the consulting view and services provided by this organization.

Chapter 5 (Consulting Automated Testing Strategy (CATS)) propose an automated testing

strategy which has been developed for efficient use in the consulting domain. An overview

of the strategy is provided in the Section 5.1. This is followed by sections which describe the

core phases of the strategy; Section 5.2 (Preparation phase), Section 5.3 (Execution phase)

and Section 5.4 (Post execution phase). As a concluding part of the chapter (Section 5.5), a

couple of pitfalls which could be avoided when applying the strategy is introduced and

discussed.

Chapter 6 (Customer Guidelines) propose customer guidelines which are developed as a

complement to the automated testing strategy mentioned above. The aim of these is to

facilitate system and acceptance testing in the customer development projects. The chapter

starts with an introduction to the guidelines in Section 6.1. Since the current main challenges

are related to requirements and lack of early verification activities in the customer projects,

the following sections (Section 6.2 and 6.3) give pointers on what should be considered in

these two areas in order to increase the system testability and stability.

Chapter 7 (Discussion) starts with an discussion of the lessons learned in Section 7.1 and

continue with an validity discussion in Section 7.2 where validity strengths and threats are

introduced. This chapter is concluded with a discussion based on the original research

questions.

Chapter 8 (Conclusions) draws conclusions based on the thesis results.

Chapter 9 (Future work) gives directions for future work that the author considers relevant

based on the current state of the automated testing strategy and customer guidelines.

 9

2 AUTOMATED SOFTWARE TESTING
This chapter introduces some key elements in the field of software testing and provides a

summary of what is considered state-of-the-art. An introduction to software testing is given

in Section 2.1. There are several development methods that focus on the testing aspects of

development; they are covered in Section 2.2. In section 2.3, different levels of testing are

discussed which could be used depending on the development status. Of course, there are

several advantages of automated testing but also many challenges and these issues will be

discussed in Section 2.4. To conclude the chapter, the last section covers state-of-the-art

techniques, methods and approaches to testing and particularly automated testing that aim to

solve these challenges.

2.1 Software testing in general
In every large software development project, there exist several defects in artefacts such as

requirements, architecture, design in addition to the source code, each of which decrease the

quality of the product. Software testing practises are used to ensure quality of software items

by finding these defects. The overall development cost can be decreased by finding these

defects early in the development process rather than later [Lloyd02][Juristo04]. For example,

consider performing a bug fix to a set of requirements after the implementation has been

completed. When performing such change, the already implemented source code may now

be based on an incorrect set of requirements. This means that the existing functionality may

not be needed after all, rendering the development effort useless. The longer a defect goes

unnoticed, the more software artefacts are being developed in parallel. When the defect

finally is discovered, these developed artefacts may need changes as a result which in turn

increase the time required for bug fixing. This makes is beneficial to conduct the testing

practices continuously throughout all development phases. By finding the defects

continuous, this feedback can be delivered to the developer responsible for bug-fix

immediately thus limiting the affected artefacts that need to be changed [Saff04a].

Agile development methodologies have evolved which accommodate the need for

continuous testing. Traditionally, every development phase produces the complete set of

artefacts before proceeding to the next phase. The main distinction between the agile

approaches and traditional ones is that the agile projects are broken up into several releases

which are given to the customer throughout the project. In agile methodologies, large sets of

documentation are also avoided in favour of strong communication within the development

team. Since it is hard to maintain such close communication in large teams, these approaches

are considered to be better suited for smaller project teams [Merisalo-Rantanen05]. Extreme

programming (XP) [Beck99] is an agile methodology which emphasises test-driven

development. This simply means that the tests shall drive the development forward and in

the case of XP, the testing practices stress the implementation of executable unit test cases.

In many organisations there is a reluctance to adapt testing practices due to a misconception

that these practices would increase the cost of development. This is not the case in reality

since the maintenance and bug fixing required often produce larger total costs without these

practices. The lack of enthusiasm for software testing can decrease when the quality benefits

are made more visible to the organisations [Bach01]. Also, in my experience, software

developers do not consider writing test cases as productive. This is also a misconception

since these tests contribute to the increase in quality while decreasing the total development

effort at the same time.

Software testing can roughly be divided into several methods and levels each of which has

distinct responsibility of testing [Rakitin01]. The methods include black-box and white-box

testing which is discussed below. Software levels include unit, integration, system and

validation testing each of which w

The most commonly cited statement in software testing is probably the one

Dijkstra in 1972, and will also be cited below because it proves a good point which applies

to both the black-box and white

"Program testing can be used to show the presence of bugs, but never to show their

absence!" [Dijkstra72]

2.1.1 Black-box testing
Often, it can be useful or even necessary to test software without any knowledge about the

internal structures of system; this is called doing a black

of testing aims to view the system as a black

make the system behave in a way that does not corresponds to the

[Myers04]. Black-box testing is about achieving a high coverage of the functional

requirements which in turn needs to be gathered in one way or another. These requirements

could be formalized in system requirements specifications or in the case of more agile

approaches the tests could be based on

development methodologies that are supposed to base the design on the requirements

specifications, such as the waterfall model

can pose problems. In these cases it

cases which in turn leads to problems when the results of the tes

[Xie06].

Statement coverage is a measure of how many of the code sta

executed test cases. Because black

the structural concern is neglected which means that statement coverage is not considered at

all. In order to achieve this type of

approach should be used.

2.1.2 White-box testing
Contrary to the black-box method

structure, this information is known when using the

to the black-box method, the test cases are designed based on the internal

branches and paths in the white

knowledge of the system design

Example 1 – White-box testing example

In Example 1, a function which returns a log structure with the exception when a == 7 and b

> 623512 is illustrated. In complex systems, there are many such p

make it difficult to ensure full code coverage since test inputs need to be generated for each

and every one of these branches. In fact, in many large scale applications it is simply

time-consuming to run all possible combinations

order to achieve high statement

visible, information that can be used when constructing the test inputs.

amount of test vectors can be limited which is a necessary means to decrease the execution

time for running an extensive test suite.

testing which is discussed below. Software levels include unit, integration, system and

validation testing each of which will be introduced in Section 2.2.

The most commonly cited statement in software testing is probably the one published

, and will also be cited below because it proves a good point which applies

box and white-box approach.

d to show the presence of bugs, but never to show their

box testing
Often, it can be useful or even necessary to test software without any knowledge about the

internal structures of system; this is called doing a black-box testing [Rakitin01].

of testing aims to view the system as a black-box where the testers finds defects by trying to

make the system behave in a way that does not corresponds to the system specification

box testing is about achieving a high coverage of the functional

requirements which in turn needs to be gathered in one way or another. These requirements

could be formalized in system requirements specifications or in the case of more agile

es the tests could be based on the user stories provided by an on-site customer. In

that are supposed to base the design on the requirements

specifications, such as the waterfall model, poorly written or low amounts of documentati

In these cases it is difficult to generate the expected output for the test

cases which in turn leads to problems when the results of the tests are to be inspected

Statement coverage is a measure of how many of the code statements that is executed by the

Because black-box testing is only concerned with the behavioural issues,

the structural concern is neglected which means that statement coverage is not considered at

all. In order to achieve this type of coverage, the grey-box and more especially the white

box testing
method that tests the system without knowledge of the internal

is known when using the white-box approach [Myers04]

the test cases are designed based on the internal statements,

branches and paths in the white-box approach [Rakitin01]. With this in mind;

knowledge of the system design can be beneficial in the construction of test cases.

box testing example

In Example 1, a function which returns a log structure with the exception when a == 7 and b

In complex systems, there are many such possible branches which

full code coverage since test inputs need to be generated for each

and every one of these branches. In fact, in many large scale applications it is simply

run all possible combinations [Myers04]. White-box testing is useful in

statement coverage because with this method the code structures are

visible, information that can be used when constructing the test inputs. This means that the

mount of test vectors can be limited which is a necessary means to decrease the execution

time for running an extensive test suite.

testing which is discussed below. Software levels include unit, integration, system and

published by

, and will also be cited below because it proves a good point which applies

d to show the presence of bugs, but never to show their

Often, it can be useful or even necessary to test software without any knowledge about the

. This type

finds defects by trying to

specifications

box testing is about achieving a high coverage of the functional

requirements which in turn needs to be gathered in one way or another. These requirements

could be formalized in system requirements specifications or in the case of more agile

customer. In

that are supposed to base the design on the requirements

documentation

difficult to generate the expected output for the test

ts are to be inspected

tements that is executed by the

is only concerned with the behavioural issues,

the structural concern is neglected which means that statement coverage is not considered at

box and more especially the white-box

tests the system without knowledge of the internal

[Myers04]. Contrary

statements,

mind; a good

In Example 1, a function which returns a log structure with the exception when a == 7 and b

ossible branches which

full code coverage since test inputs need to be generated for each

and every one of these branches. In fact, in many large scale applications it is simply too

box testing is useful in

coverage because with this method the code structures are

This means that the

mount of test vectors can be limited which is a necessary means to decrease the execution

 11

The main limitation of the white-box approach is that it only focuses on the implemented

structures of the system. To ensure that the requirements are satisfied, the black-box

approach should be used. However, the white-box approach is indeed necessary due to the

ability of achieving high coverage and combining this method with the grey-box and the

black-box approach would be appropriate to get the most complete testing [Cole00].

2.1.3 Grey-box testing
The grey-box method is an uncommonly used concept which is a combination of the black-

box and the white-box approach, and the mixture of these colors is also why it is called grey-

box [Büchi99]. It has the visibility of the module interfaces which the black-box does not

while it do not contain the information about their internal structures which the white-box

approach do. With the data structure information, the grey-box testing type is used by

methods that act in the integration test level and use the structure design specification to get

the acceptable input and output for the interfaces [Sneed04]. The main purpose with the

method is to see if the interactions to and from the component interfaces corresponds to the

behavior described by their corresponding documentation. This is also a difficulty one face

when using the approach since many applications lacks the formal descriptions of what input

and outputs are valid for these interfaces and in which cases exceptions are thrown.

2.2 Test levels
Software testing can be divided into several so called test levels which basically describe

where to focus the testing [Rakitin01]. This means that each level has a distinct testing

responsibility such as individual module testing at one level and the module integration at

another. These levels are introduced through the V-Model which describes four separate

levels namely; Unit, integration, system and the validation testing level. This model is

derived from the classic Waterfall development model [Sommerville04][Pyhajarvi04]. The

V-Model with its subsequent levels is illustrated by Figure 1.

Requirements

Implementation

High level design

Detailed design Unit testing

Integration testing

System testing Specification

Acceptance

testing

Figure 1 –V-Model of testing

Each of these levels has a distinct testing responsibility which is described below.

• Unit testing. This level verifies if the implementation of the individual modules

described by the detailed design behaves in an acceptable manner. However, it could

also be used to ensure the correct behavior of the units by using a black-box

approach.

 12

• Integration testing. The integration testing level focus on the high level design which

usually contains cooperating architectural artifacts. This means that this level

verifies if the implemented interactions between modules are correct.

• System testing. The system testing level ensures that the complete system is

behaving in acceptable manner. It acts with the system specification as the basis and

the input source to this test level comes from the developers.

• Acceptance testing. This testing is usually done by the end-user or customer and

verifies if the requirements are fulfilled by the implementation with the requirements

specification as a basis. The main difference between this level and the system

testing level is that the source of input comes from the customer instead of the

developers.

This particular model has several disadvantages, one of them being the fact that it is based on

the Waterfall model [Pyhajarvi04]. The V-model assumes that the development phases are

completed in the order described by Figure 1. In the agile development environment, this

model needs to be modified so that the unit test cases may be written for a small set of

requirements instead of testing the complete implementation of the requirements

specification. The model may however be appropriate in several cases where the clear

distinction between the development phases needs to be known. For example, a consulting

firm that needs to sign-off a particular deliverable to the customer may prefer this model

over the agile approach where the boundaries are fussy. More information about these

particular testing levels is found below with a discussion of the automation possibilities of

each level.

2.2.1 Unit testing
Unit testing is meant as a means of testing software components in isolation with disregard

to the rest of the system thus to verify that the single units of software meets the

requirements or its design intentions, depending on the development method [Runeson06].

This type of testing can be done manually but is often automated in order to increase the

efficiency since such tests usually require minimal human attention which in turn decreases

the execution time.

An executable test is a test case that can be executed by a computer system. The automation

is usually done by implementing executable test code with the responsibility of executing

procedures and functions with a specified range of test vectors. As mentioned, it is often hard

to test all of the source code statements due to the large amount of possible branches.

Procedures exist such as the use of randomised unit testing which is an approach that has

been proven successful in regards to unit testing [Yong05]. This technique aims to

automatically generate unit test cases and thereby decrease the manual effort that is usually

needed to construct these.

In regards to automated testing, the implementation of unit tests in form of source code can

have several benefits. First of all, this enables the possibility of repeating the same test over

and over again without the need for large amount of tedious manual labour [Runeson06].

This is obviously an advantage when building up a regression test suite in the sense that the

decreased manual efforts will lead to decreased costs which can be used for an eventual

expansion or improvement of the test suite. Another benefit that may not be as apparent is

the reuse possibilities of unit test cases among several projects which can be very useful in

the consulting domain (which is the focus of this thesis).

There are several frameworks available for executable unit testing, the most known being

JUnit [ObjectMentor01] that is used for unit testing of Java based classes and methods. Since

the introduction of this framework, the benefits have been recognised and frameworks for

other languages have been developed with similar features. As an example, there is an

executable unit test framework called the TSQLUnit framework [Ekelund02] which is based

 13

on the xUnit framework and targets the T-SQL database language developed by Microsoft.

With this extensive support, the unit test cases may be automated without large restrictions in

the various programming languages. This is of course a major advantage in the sense of

reuse because the test suites may now be classified for different types of domains where

some languages are particular useful.

As mentioned, unit testing aims to test software components in isolation but it can be hard to

separate one unit from another due to large dependencies among them [Tillmann06]. By

using so called mock objects, the surrounding environment for the object under test are

simulated. Consider a class that needs to be tested, class C. This class is in turn dependent on

some methods in class C'. A mock object is used to simulate objects such as C' in order to

ensure that the input and output between C and C' is correct. The main purpose with this is to

make sure that an eventual found defect is caused by the unit under test and not some other

object in its environment. By simulating the environment in this way, the execution time can

be reduced since the operations done by C’ is kept to a bare minimum [Saff04b].

2.2.2 Integration testing
It is common practice to initiate the integration testing phase when the individual units have

passed through unit testing with sufficient quality. This is where these individual

components are grouped and tested together through the corresponding interfaces of the units

[Leung97]. According the Keller et al. [Keller05], this is a part of testing that is often

neglected in favour of other testing measures such as unit testing. However, integration

testing is very important because many defects are discovered when the units need to

cooperate. Individual unit may work fine alone but most often; defects are revealed when

other units try to use their interface. This can derive from, for example, misinterpretations

made by separate developers of the unit responsibility which can lead to failures in the

interaction between them.

A common mistake that can be made when doing integration testing is to test the component

interactions through the user interface alone which is more like the system test approach

[Leung97]. Such approach to integration testing can have some disadvantages because it is

not guaranteed that the user interface provides entry points for all underlying functionality

delivered by the components external interface. This means that some application logic will

be untested and such problems can be avoided through bypassing the user interface when

performing the integration test [Keller05]. This way all the functionality provided by the

external interfaces may be exposed to the test cases. It has been mentioned by Keller et al.

that test cases for GUI components are hard to automate which makes it feasible to disregard

the user interface in this level of testing [Keller05].

2.2.3 System testing
After the integration testing phase has been completed, the system testing is initiated which

targets the system functionality [Leung97]. This phase is a black box approach which should

be performed without the knowledge of the systems internal structures. In order to generate

good test cases that accurately tests the functionality, the requirements need to be well

defined and unambiguous.

Because this level of testing only focuses on the behavioural aspects of the system it can be

hard to automate in regards to the structure of the requirements specification. In many cases,

the specification documents are written in natural language which implies that some

requirements may be ambiguous and unclear which in turn affects the testability. Manual

testing in this case may be more appropriate since it can be hard to properly construct an

application which successfully can derive the correct behaviour from these documents.

Nebut et al. attempts to combat the problem with deriving behaviour out of specifications by

introducing a contract language which can be used to formulate the requirements in such a

 14

way that test cases can be derived through documents written using the language [Nebut03].

This approach attempts to formulate use cases and scenarios, specify all acceptable test

inputs and outputs in these and then generate test cases with these artefacts as input

[Nebut03]. Such approach may seem feasible in theory but system requirements document

written in formal languages tend to be hard to understand and thereby be less useful in other

development practices such as in software design. In fact, many companies today prefer the

use of informal notation because of the increased understanding of these compared to use

cases, scenarios and formally written requirements.

2.2.4 Acceptance testing
This process usually involves the customer to a great extent. Its focus is to ensure that the

system fulfils the agreed upon requirements i.e. the acceptable behaviour and this is done by

letting the customer or end-user be involved. As can be seen in Figure 1, this is the last level

in the V-Model which implies that defects found here can be costly. Therefore, it would be

appropriate to develop the test cases for this level early on, based on the requirements

together with the customer. By involving the customer in this manner, the requirement

defects could be found early instead of in the actual test case execution later on. It is also

worth to mention that test-driven methodologies goes one step further and lets the customer

take full responsibility for the acceptance tests which force this person to be involved in the

process.

Miller and Collins states that the customers should not start writing these acceptance test

cases too early in the development due to the lack of system understanding at this point in

time [Miller01]. In my opinion, it could however be useful to do this early on in the sense

that changes to the test cases throughout the project will increase the system understanding.

This could increase the probability of achieving correct and complete test cases in time for

the final execution when the system is completed.

It is a misconception that acceptance testing cannot be automated and in fact, some agile

methodologies require it. Several frameworks have been proposed. For example, the JAccept

suite by Miller and Collins [Miller01] which targets user scenarios in Java applications by

letting the customer in an agile setting write these test cases in a tool. Another framework is

the one proposed by Talby et al. in [Talby05]. It has been identified by Talby et al. that some

formalism is required in the system test specifications if these behaviors are to be automated

[Talby05]. Their framework formalizes the specifications to the extent that they can be used

for automation as well as be read by non-technical stakeholders. This is a large benefit in the

sense that training stakeholder in formal languages is often not feasible or desired. However,

because acceptance testing most often targets the graphical user interface and involves the

customer it can be still be hard to automate. First of all, the frameworks should not be

technically challenging for the novice customer, otherwise the customer will not be able to

form complete tests. Because there are many graphical components involved, it can take

significant time to keep the frameworks up-to-date which is due to the large changes that

often occur in for example the Java SDK. With this in mind, this level can be automated as

discussed but it is often not economically viable to do so.

2.3 Verification-oriented development methods
Traditional development models such as the widely known waterfall model divide the

development into distinct phases with strict separators [Sommerville04]. This poses several

problems in regards to the testing phase which is initiated after the implementation has been

concluded. If a strict waterfall approach is used, most of the defects will be discovered in late

phases of development which has proven to be very costly [Graham93][Boehm01]

[Juristo04]. As opposed to iterative development, the test-oriented development methods

integrate the quality aspects into the process itself by performing the testing activities

continuous rather than sequential. It is said that the test cases drives the development forward

since that the implementation is designed to ensure that the test cases pass [Williams03].

 15

This section presents two of these methodologies and gives a brief discussion of the

feasibility of these.

2.3.1 Test-driven development
In test-driven development (TDD), unit test cases are designed based on the requirements

rather than the implementation. The production code is designed to pass the unit tests which

in turn are designed to fulfil the requirements [Williams03]. A small set of unit tests are

written prior to the production code which is then implemented directly after in an iterative

manner throughout the development process. There are several advantages that make this

practice attractive which are also discussed in [Williams03];

• Early defect detection. Because the automated test cases are available before the

source code unit is developed, the implemented code can be tested as soon as it has

been developed. This means that possible defects may be corrected early which

decreases the costs in the sense that it avoids the discovery of these defects at later

stages in development where they are more costly to fix.

• Regression testing. If the practices are followed to the letter, there should be

automated unit test cases for every production unit. This makes this approach very

attractive in situation where regression testing is essential because every source code

unit may be re-tested through their corresponding unit test case.

Due to the fact that the test cases are written prior to the implementation, the testability will

increase in the sense that non-testable code will not be implemented at all. However, this

approach may also decrease the design documentation that is usually produces with more

traditional development methods [George04]. Without this documentation, the implemented

design may be hard to understand for new developers. As mentioned by George et al., the

rational regarding the structure of the system may not be documented either which can lead

to even larger misunderstandings [George04]. However, these are issues that can be dealt

with during the development process and thereby be avoided.

George et al. conducted an experiment described in [George04] where TDD was compared

to the traditional waterfall model. It was determined by George et al. that the code quality is

increased with the TDD approach but that it was more time consuming than the traditional

approach [George04]. However, this experiment did not consider maintenance time after

release. As TDD aims to provide larger quality than products developed by the waterfall

model the total development time of the waterfall approach may be increased if the

maintenance time after release is considered. Another interesting observation made by

George et al. was that some developers did not produce the necessary unit tests in the

traditional approach after the production code had been implemented [George04]. This

makes TDD even more appropriate for organisations where quality assurance are of the

essence in the sense that developers are more or less forced to make unit test cases which in

turn increases the testability of the source code.

In development projects where the production code comes prior to the test cases, it is

common that functionality is developed which will be discarded at later phases. Agile

methodologies define this as the You Ain’t Gonna Need It (YAGNI) phenomenon. By using

the test-driven state-of-mind, the test cases are meant to discover unnecessary functionality

before it is implemented in the application. In other words, if the functionality may be

needed later on, develop it when this time comes instead of when it is estimated that the

functionality may become necessary [Jeffries07]. It also relates to testability since the

developers will avoid the complexity of implementing functionality that might be removed

when it is discovered that the functionality is incorrect. Pancur et al. has done an empirical

study where they compared TDD with, what they call and iterative test-last (ITL) approach

by using university students in their senior year [Pancur03]. The result from this experiment

show that the students think of TDD as ineffective and that the two development approaches

did not differ that much. In my opinion, this result is tainted because of the use of students

 16

instead of practitioners in industry. Students will only deliver the product or laboratory

assignment and then move on to the next course which means that they will not experience

the low maintenance benefits gained by using TDD. With this in mind, the only visible

aspects to these students is the initial overhead in regards to test case development time using

TDD. However, this time would be decreased if the bug-fixing time would be included.

There has been empirical studies such as the one conducted by Bhat and Nagappan where

they empirically evaluated TDD against a non-TDD approach in two case studies [Bhat06].

These results, which were conducted with professional developers, showed that it took

longer time to develop software with TDD but it increased the code quality significantly

when compared to the non-TDD approach. However, it did not described if the overall

development time included eventual maintenance time needed for bug-fixing after release

which could have altered the results in favor of test-driven development.

2.3.1.1 Extreme programming

One of the most famous agile development methods that advocate test-driven approach is

Extreme programming [Abrahamsson03]. Extreme programming introduces twelve core

practices namely; Planning game, Small releases, Metaphor, Simple design, Tests,

Refactoring, Pair programming, Continuous integration, Collective ownership, On-site

customer, 40-hour weeks, Open workspace and Just rules as first introduced by Kent Beck in

[Beck99]. The on-site customer practice of XP is particularly interesting to testing and it

states that a customer representative should be on-site 100% of the development time. This

customer delivers short user stories of some wanted functionality and these can be

considered the equivalent to the requirements specifications used in other development

methodologies. The development is then conducted in small iterations where the design and

user acceptance tests are based on these stories. It is important to have a single customer that

can correctly represent the end-users of the system and who has sufficient time for the

project. Johansen et al. describes the need for a customer that can explain the requirements to

the developers [Johansen01]. This type of clarification is particularly important in extreme

programming since there is limited documentation of the requirements and because the

primary testing focus is put on unit and acceptance testing both of which are based on the

requirements. The XP paradigm advocates that the initial user stories should be kept short

until the time of implementation where the on-site customer is asked for further details

[Wells99] which go hand in hand with the YAGNI concept described in Section 2.3.1. As a

consequence of this concept, the design should be simple which in turn increases the

testability needed for the unit and acceptance test.

The extreme programming description found in [Wells99] states that there should be unit

tests for every production code unit which facilitates the regression testing needed between

releases. Another interesting issue in regards to acceptance test is that it is the responsibility

of the customers to form these tests so that they can be automated by the testers later on. This

is an excellent way to get a fair amount of customer involvement since it ties the customer to

the project which can be utilized for increased developer understanding of the customer

need. It is also worth to mention that the acceptance tests are constructed for one iteration at

a time. This has the benefit that it minimizes the risk of getting to far away from the

customer which could become a problem if acceptance tests for all iterations were to be

developed all at once. The traditional V-Model described in Section 2.2.1 places the test

levels, including unit and acceptance level, in a sequential order which do not work in the

XP methodology. However, the levels still apply with the distinction that they are used

continuously throughout the development instead of sequential with the aim to begin the

levels prior to the implementation. It is most common to implement executable test cases for

the production units and the primary used unit test frameworks today inherit from the xUnit

framework, which also includes the JUnit framework that is further described in Section

2.5.7 where a code example can be found as well.

 17

A difficulty with test-driven methodologies such as extreme programming is that they are

relatively new in comparison to other models such as the waterfall model which means that

their worth has not yet been definitely determined. However, there are some papers which

evaluate the XP paradigm empirically. Abrahansson gives some empirical data in

[Abrahamsson03] where a XP project is conducted in two releases. The results from this

study showed that learning experiences of the methodology practices was conducted in the

first release which affected the second release positively in terms of estimation accuracy and

developer productivity. Koskela and Abrahamsson has also published a later paper which

targets the customer-on-site practise in XP and they claim that even though the customer was

100% available, the actual work done in development was more close to 21% of the total

time [Koskela04]. These studies do however have some drawbacks since they use students

as their subjects and use a fellow researcher as the on-site customer, a bias also recognised

by the authors in [Koskela04]. As mentioned by Abrahamsson, it can be difficult to compare

empirical data collected from different organisations since each organisation adopts different

practices and conducts them in dissimilar ways [Abrahamsson03]. This is partly due to the

fact that the extreme programming methodology only provides guidelines in regards to

which practices that may be adopted and does not dictate that every single practice should be

used. Merisalo-Rantanen et al. made an empirical study where a critical evaluation of the

extreme programming methodology was conducted [Merisalo-Rantanen05]. They argue that

the methodology is too dependent on skilled individuals and that the methodology itself is

mostly derived out of other development paradigms. It is also recognized by Merisalo-

Rantanen et al. that extreme programming needs further study in order to validate how it

applies to large scale project since the practices are more focused on small teams that have

good communication skills [Merisalo-Rantanen05]. Another challenge relates to how the

management and developers are to be convinced of the benefits gained by adopting the

development methodology. This is described as how to sell the practices by Johansen et al. in

[Johansen01]. Because it has not yet been empirically proven that the adoption of these

practices actually provides added value in form of productivity and product quality it can be

hard to convince these people to move from a well established set of development practices

to this new one. It can be concluded that this methodology needs further focus in terms of

empirical studies to determine its worth.

2.3.2 Behaviour driven development
A recent effort has been made to combine the test-driven development methodology with

domain driven design in an attempt to get the benefits from both into a unified development

method called behavior-driven development (BDD) [BDD07]. To my knowledge, this

approach has not yet been evaluated empirically so the method will be discussed here out of

a speculative perspective based on the information found in [BDD07].

As the name implies, this development method focuses on the behavior of the system, which

is usually described by the system requirements specification in non-agile methodologies

such as the waterfall model. One of the aims with agile and the test-driven part of BDD is to

minimize such documentation and instead have a customer on site which mediates the

requirements through brief user stories and more detailed ones when the functionality is

actually needed [Jeffries07]. The test-driven part also aims to increase the shared

requirement understanding between customer and developer. Test cases are designed with

the purpose to test that the system fulfils the acceptable behavior [BDD07]. In other word, if

the output from the test cases corresponds to an acceptable behavior, the test has passed.

With the behavioral focus, strong cooperation among the various stakeholders is needed

which is the reason behind the customer-on-site practice. If understanding is not mutual,

proper test cases would not be possible because the correct output would not be known. In

organizations where the requirements tend to be ambiguous it could be a risk of adopting this

approach without proper education in the field of requirements engineering. A similar need

in regards to requirements elicitation is also recognized by Murnane et al. in [Murnane06]. If

the correct behavior cannot be properly elicited through the various stakeholders, the test

 18

cases would probably be incorrect which would affect the final implementation. Murnane et

al. discusses in [Murnane06] that proper input/output elicitation is needed to ensure the

effectiveness of black-box testing approaches which is usually the case when testing

behavioral artifacts.

Similar to test-driven development, the test cases are written prior to the implementation of

the production code which means that defects in the requirements may be detected at the

early stages [BDD07]. As mentioned, finding defects early is very cost effective and this

certainly applies to requirement faults which can be time consuming and hard to correct after

implementation. In regards to automated testing, this development method seem as friendly

to executable test frameworks as the test-driven approach which can reduce costs in favor of

early defect detection.

Even though this methodology is new, there has been an attempt to support it through

frameworks such as JBehave [JBehave07] that targets the Java programming language and

RSpec [Hellesøy05] for Ruby. The JBehave framework is similar to the JUnit framework in

the regards to the structure and is described further in Section 2.5.8.

2.4 Automated testing opportunities
Manual execution of test cases is considered inefficient and error-prone and it is often

possible to increase the efficiency by automating these which also relives the workload of

the testers [Keller05]. By introducing automated test cases to the development process, the

testing cost also decrease and some of the tedious manual labour is avoided. However, in

addition to the opportunities it provides, there are several challenges as well. It does take

some time to develop these automated test cases and several considerations should be taken

before their implementation. If test cases are to run several times which is the case in for

example regression testing, it may prove beneficial to automate them so that the resources

needed for the re-run can be put to better use [Keller05].

Even with the introduction of automation it is most often impossible to achieve full test

coverage due to the large amount of different states and branches that a software product

may enter [Whittaker00]. This introduces the issue that handles which artefacts that are

important enough to be considered for coverage of the automated test cases. However, it

should be noted that striving for full coverage is not always the most appropriate measure for

fault detection. This is due to the fact that the defects often have different severity while the

test cases differ in terms of cost [Elbaum01].

A test strategy of an organisation describes which types of tests that is to be conducted and

how they should be used within the development projects [Keller05]. When forming this

strategy it is important to consider which tests that is to be executed and when they are to be

executed and as Keller et al. states, it can be hard to run certain tests at the incorrect test

level. For example, an integration test would not be the most feasible approach to use when

trying to find defects in the internal structures of a particular module. Instead, perhaps a unit

testing approach should be used in that state of development.

A large amount of software development companies today are far behind in this field of

automation and sometimes, the testing resources are allocated after the product has been

developed. Such behaviour can inflict serious problems to the product quality. It is hard to

develop automated test cases in late development phases when automation issues have not

been considered in the architecture and design. In this section, several challenges as well as

possible benefits imposed by automated testing will be discussed, issues that should be taken

into consideration when forming the automated test strategy for the different projects in

software development organisations.

 19

2.4.1 Reuse
In most development stages, there has been a focus of component reuse which has several

advantages. First of all, the component can be written once and used many times which saves

development effort. It also has quality benefits because the component may be refined and

improved over time. This practice can be used for requirements, design artifacts and source

code components and it can also be applied to the automated test cases. With this kind of

reuse, the benefits discussed such as quality refinement is transferred to the test cases as well

and first-class test cases is very important in testing. For example, with poor quality, false

positives may be found instead of real defects which can lead to unnecessary manual labor.

This is an issue that can be remedied with sound reuse.

Figure 2 – Reuse strategy example

To get a reusable quality test suite it could be appropriate to extend the normal test case

development process briefly described by Keller et al. in [Keller05]. Figure 2 gives an

example of how the test suite can be improved along sides the ordinary development. It

contains the following stages;

• Planning. This phase includes consulting the test strategy to see if the test case

chosen from the test suite corresponds to the current testing goals.

• Maintenance. Often, when test cases are brought from the test suite, they need some

maintenance so that it can be adapted to the current setting. This state takes care of

the possible modifications needed.

• Test execution. In this stage, the test is executed in order to find eventual defects and

more importantly for the reuse issue, return test data to the next stage.

• Analysis. Analysis in regards to test reuse is concerned with how the test case

performed, if it fulfilled its purpose. Some measurements may be needed, depending

on the current goals of the test strategy.

• Test improvement. With the results provided by the analysis part, the test case may

now be improved before it is returned into the test suite that is illustrated as a black

portfolio in Figure 2

Notice should however be taken to the fact that the aim of the test improvement stage is to

improve the test suite in favor of the production software quality and not only the test cases

themselves. In other words, have the software quality aspects in mind when modifying and

improving the test cases so that the goals provided by the test strategy are not neglected.

2.4.2 Regression testing
After a change has been made in a software artefact it is usually a good idea to re-run

previous test cases to ensure that the change did not affect other system components which

have previously passed tests. This is called regression testing. It is a common belief that

automated test cases will find many new defects continuously throughout the development

process and according to Kaner this is not the case [Kaner97]. Kaner states that most defects

that the automated test cases find are at the first execution right after the test case design

[Kaner97]. Still, these test cases are most useful. Consider the fact that re-iteration of old test

cases are needed in order to guarantee that changes in the software have not introduced faults

into the already tested components. Without these automated test cases this has to be done

manually and the testing cost increases for every manual test case execution. Now, because

of the automation, this tedious work and large costs can be avoided simply by the re-

 20

execution of the test cases automatically, a large benefit also acknowledged by Keller et al.

[Keller05].

In large software systems where there are copious amounts of test cases, there can be some

problems in regards to the time and resources needed for the execution of all tests. Granted,

automated test cases embedded together with the production source code may decrease the

execution time compared to manual testing but it may still take a very long time do a full

automated regression test. By using prioritisation of the source code units, the regression test

case suite may be constrained which could save time when doing the regression testing.

There are several test case prioritization techniques that can be used for the selection of test

cases and it depends on the testing goals which one that should be chosen [Elbaum01].

Another more immediate challenge is the maintenance of large suites of test cases. Consider

that these test cases assume that the methods and constructors have a particular defined

header that expects a particular set of input. Such a simple question can pose serious

problems in regards to the cost of maintaining large scale automated test suites due to the

continuous code changes. Meszaros et al. has proposed solutions to these problems into a

suite they call the Test Automation Manifesto which is shown below and first introduced in

[Meszaros03].

Principle Rationale

Concise As simple as possible and no simpler.

Self checking Test reports its own results; needs no human interpretation.

Repeatable Tests can be run many times in a row without human intervention.

Robust Test produces same result now and forever. Tests are not affected by

changes in the external environment.

Sufficient Tests verify all the requirements of the software being tested.

Necessary Everything in each test contributes to the specification of desired

behaviour.

Clear Every statement is easy to understand

Efficient Tests run in a reasonable amount of time.

Specific Each test failure points to a specific piece of broken functionality; unit test

failures provide “defect triangulation”.

Independent Each test can be run by itself or in a suite with an arbitrary set of other

tests in any order.

Maintainable Tests should be easy to understand and modify and extend.

Traceable To and from the code it tests and to and from the requirements.

Table 1 – The Test Automation Manifesto. (From [Meszaros03])

The twelve principles seen in Table 1 from [Meszaros03] would be appropriate to consider

when designing the test cases. An interesting issue also covered by these principles is the

aim of providing easy-to-read test cases. This is especially important to the test maintenance

in the sense that it is hard for developers to keep every test case in memory. Complex tests

give longer maintenance time which led to larger overall testing costs. These principles of

course consider more issues than maintainability, such as traceability which is a considerable

asset to have. Without such traceability it would be hard to see which particular behavior that

has passed or been failed by the test case.

2.4.3 Coverage issues
With large software systems, it is almost impossible to achieve full test coverage because of

for example the large amount of different branches and states that can occur in the program

execution [Whittaker00]. Coverage is a general concept which can be divided into criterion

such as statement, branch and path coverage criterion [Zhu97]. The coverage criterion

efficiency in regards to found defects largely depends on the application type and

complexity. A brief introduction to the above mentioned criterion is described below and

alternate descriptions of these can also be found in

• Statement coverage. It can be hard to reach all statements in the sense that

statements are rarely executed throughout the program and this criterion focuses on

executing each source code statement.

• Branch coverage. This

depending on some condition. (e.g. if

• Path coverage. This

executed throughout the

been followed.

In the cases where full coverage is actually possible some other

Full coverage does not necessarily mean that all defects are discovered

because different types of tests

data structures that may be executed

real simple illustration of a C function which suffers from a possible boundary violation.

Example 2 – Buffer overflow

As can be seen in Example 2, a buffer overflow may occur if n > 2 thus

appropriate to include test cases with boundary checks to find this defect.

course a real simplification but consider the line

the complexity of these. If full coverage is achieved

every of the boundary violations

considered as well, for example control flow defects.

not be possible to have full coverage

selection where one issue is to weight coverage extent against the defect types that needs to

be considered.

2.4.4 Test selection
When full coverage of all source code and all types of defects are

to make serious considerations about which artefacts that should be considered for testing.

regards to the automated test selecti

lie at an inappropriate level is hard to execute no matter if they are automated or

manually. This should be taken into account when doing the test selection because as Keller

et al. describes, tests that are hard to do manually is often equally

[Keller05]. With this in mind, organization should be aware of that automat

solve issues related to such manual

considered which manual labor that

Before the actual testing is initiated, it

with the test cases and particular how many times they are expecte

tests that is to be run once hardly deserves to be automated

importance of knowing the testing objectives through the use of a test adequacy criterion

[Zhu97]. This test adequacy criterion is a mea

various amount of these has been introduced in to the field of software testing

Zhu et al. [Zhu97]. This measure is connected to the coverage in the sen

criterion steers which type of

organisations tend to over automate in the sense that

cases [Keller05]. This could pose problems because

consuming to do manually such as

A brief introduction to the above mentioned criterion is described below and

alternate descriptions of these can also be found in [Zhu97].

t can be hard to reach all statements in the sense that

executed throughout the program and this criterion focuses on

executing each source code statement.

This criterion targets the branches that an application

depending on some condition. (e.g. if and switch case statements)

This criterion focuses on the different possible paths

executed throughout the functions. It checks if each possible path in a function has

In the cases where full coverage is actually possible some other challenges are raised instead.

Full coverage does not necessarily mean that all defects are discovered [Juristo04]

s are necessary for the coverage of the large amount of possible

executed throughout the source code [Juristo04]. Example

real simple illustration of a C function which suffers from a possible boundary violation.

Buffer overflow example

, a buffer overflow may occur if n > 2 thus it would be

appropriate to include test cases with boundary checks to find this defect. This example is

ut consider the lines of code in large industrial applica

If full coverage is achieved it may be possible to cover each and

every of the boundary violations, but there are many other types of defects that need to be

ample control flow defects. With this in mind, it would probably

not be possible to have full coverage in regards to all types of defects. This introduces test

selection where one issue is to weight coverage extent against the defect types that needs to

When full coverage of all source code and all types of defects are not feasible it is important

make serious considerations about which artefacts that should be considered for testing.

regards to the automated test selection it is discussed by Keller et al. [Keller05] that test that

an inappropriate level is hard to execute no matter if they are automated or done

. This should be taken into account when doing the test selection because as Keller

describes, tests that are hard to do manually is often equally or even harder to automate

. With this in mind, organization should be aware of that automation may not

manual execution difficulties of test cases. Instead, it should be

considered which manual labor that is most economical viable to automate.

Before the actual testing is initiated, it is also important to determine what is to be achieved

with the test cases and particular how many times they are expected to be executed whereas

hardly deserves to be automated [Zhu97]. Zhu et al. discusses the

importance of knowing the testing objectives through the use of a test adequacy criterion

This test adequacy criterion is a measure of the feasibility of a given test and a

various amount of these has been introduced in to the field of software testing according to

97]. This measure is connected to the coverage in the sense that the selected

criterion steers which type of coverage is to be achieved. Keller et al. describes that

organisations tend to over automate in the sense that they try to automate all manual test

. This could pose problems because some items are in fact less time

consuming to do manually such as, according to own experience, GUI testing

A brief introduction to the above mentioned criterion is described below and

t can be hard to reach all statements in the sense that some

executed throughout the program and this criterion focuses on

targets the branches that an application may enter

different possible paths that are

path in a function has

are raised instead.

[Juristo04]. This is

the large amount of possible

Example 2 is a

real simple illustration of a C function which suffers from a possible boundary violation.

it would be

his example is of

in large industrial applications and

o cover each and

, but there are many other types of defects that need to be

With this in mind, it would probably

This introduces test

selection where one issue is to weight coverage extent against the defect types that needs to

feasible it is important

make serious considerations about which artefacts that should be considered for testing. In

er05] that test that

done

. This should be taken into account when doing the test selection because as Keller

to automate

on may not

ead, it should be

be achieved

d to be executed whereas

discusses the

importance of knowing the testing objectives through the use of a test adequacy criterion

of a given test and a

according to

se that the selected

describes that

all manual test

items are in fact less time

GUI testing. Large

 22

amounts of change may increase the total cost of the automated test cases and this is because

these test cases need to be maintained when the change occur [Kaner97]. GUI components

fall into the category of components that is exposed to frequent change, an issue also

described in [Kaner97]. It could thus be a good idea to complement automated test cases

with manual ones in an attempt to get as high return of investment as possible.

As mentioned by Juristo et al., a common problem is that software testers often rely on their

competence and experience when a choice is to be made among the various existing testing

techniques and methods [Juristo04]. Without actual proof of the feasibility of the testing

methods, the choice may suffer from inefficiencies and low coverage of important software

artefacts [Juristo04]. Juristo et al. proposes in [Juristo04] that the knowledge about test

technique selection should spawn from empirical studies that prove their benefits. This

would impose a more engineering like approach to the software testing process which in turn

would increase the maturity of the process, according to Juristo et al. It is of course an

advantage if the benefits are proven and an engineering approach is used but in my opinion,

the competence, experiences and intuition of the developers should not be neglected when

doing testing.

2.4.5 Test data generation
As mentioned above, full coverage is nearly impossible to achieve in most cases and this

brings forward the issue of which test data that is appropriate to generate in order to

maximise the coverage of the given criteria. Each set of input to a function is called a test

vector and in most cases, several of these vectors need to be generated in order for the test

case to be somewhat efficient. It has been determined by Xie that commercial tools often

generate redundant test cases [Xie06], an issue that is dealt with in their approach to

automated testing. This is an important challenge to deal with in test data generation because

of the increased execution time that comes with large amounts of test vectors.

There are several approaches to test data generation and the three of these are described

briefly below which is also described by Pargas et al. in [Pargas99].

• Random generation. In this approach, the data is randomised into the test vectors,

often iteratively in attempt to execute a chosen statement.

• Path-oriented generation. This approach uses the various paths visible in the source

code to generate test data which triggers the execution of selected paths in the

application.

• Goal-oriented generation. In this approach, a statement is selected for execution and

no matter which path or branch that needs to be entered; the test data is generated in

an attempt to execute the particular statement.

When the number of statements, paths and branches increase it also enhance the difficulty of

data generation.

Example 3 – Path-orientation example

Consider Example 3 that is related to the path-oriented approach. To reach the code which is

marked as a defect (0.1 is a double which will result in a mismatch), the test data generated

 23

need to be a == ‘b’, b == c. Otherwise, the path is unchecked and the defect remains

unnoticed. Full path coverage is most often impossible in large scale applications due to the

vast amount of possible paths. Two approaches which target these issues through automation

will be discussed in a later section.

2.4.6 Test analysis
When the test cases are executed with the test vector as input, the intent is to provide output

to some entity that has the responsibility of verifying that the behaviour of the procedures

and functions are correct. The documentation produced that describes the behaviour, i.e. the

requirements specification, the architectural and the design documents is appropriate to use

in test data generation as well as test analysis [Xie06]. In case of more agile approaches, this

behaviour could be derived from the customer and user stories instead. Because the output

should reflect the behaviour of the system it would be appropriate to generate the output

vectors based on these artefacts [Xie06]. However, as discussed by Xie [Xie06], there is

often insufficient documentation in software development projects. Furthermore, Xie

propose a framework in [Xie06] with the aim of increasing the effectiveness of automated

testing when such artefacts are missing.

As mentioned by Yong and Andrews [Yong05], manually checking output values can be an

exhaustive task which can be relieved by introducing automated test oracles which basically

is a program that checks the output given by the application under test. One of the most

concerning problems with these oracles is how to replace the instincts of a human controller

with automated software which is an area suitable for further research.

2.4.7 Testability
Testability is basically a measure of to which extent a software product can be tested,

however several definitions exists as described in [Mouchawrab05]. With poor testability,

fewer defects will be discovered and the quality of the product will be lower than it could

have been with more testable structures.

In regards to test consultants which can arrive to the project in late phases it may not be

possible to change the design of the already implemented system so that the testability can be

increased. If the situation occurs where the developers deliver code with low testability to the

testers it can lead to inefficient software testing. Some examples of problems that can

contribute to low testability are presented below:

• Ambiguous requirements. If the developers produce ambiguous requirements, it will

be hard to write sufficient test cases for the system testing.

• Complex design. If the design is to complex, it will be hard to automate the

traceability back to these entities from the source code. In fact, bad design may

disable the possibility of automation to a great extent [Keller05].

• Complex source code. If the source code is to complex, it will impose a long

learning time for the testers which may lead to inefficient test cases.

• Maintainability. It is not enough to make the architecture testable, the test cases

developed along sides the other software artifacts has to be maintained as well

[Kaner97].

Design pattern testability is an interesting notion which is strongly related to the complex

design problem. As a brief introduction, design patterns are recurring design decisions taken

during development and these are further described in [Larman05]. Design pattern testability

is used to control design patterns to avoid a decrease in system testability. Baudry et al.

introduces the concept of testability anti-patterns which represents bad design decisions

which increases the testing effort needed to ensure that the component has been properly

tested [Baudry03]. It would be appropriate to use these patterns to ensure that the design

patterns used do not resemble the ones which provide low testability.

 24

2.4.8 Test strategy
To achieve success when adopting testing practices in the organization, a strategy is needed

which contains the testing objectives i.e. the goals that are to be reached [Keller05].

As mentioned by Keller et al., an automated test strategy describes what types of tests that is

to be conducted in the development projects and at which test level they belong [Keller05].

It is important that the test cases are located at the correct level because usually these

different levels have a distinct set of goals and objectives which may not be appropriate for

the given test case [Keller05]. For example, a boundary check at the integration test level

will probably not discover errors in single branches of code that are not accessed through the

component interface. Such test would be more appropriate to have at the unit test level where

the probability of defect discovery is higher. Such issues need to be dealt with because

inefficient test strategy may result in lower software quality in the end.

It could also be a good idea to consider development policies in the strategy in regards to the

test collection that is implemented throughout the projects. If the test suites are not

developed using the same engineering policies as the other software artifacts, the test cases

would probably become inefficient. Using an ad-hoc approach could be hazardous to the

quality of the test suite which in turn could propagates to the quality of the actual production

source code in the sense that bad tests may fail in achieving the overall goals describes in the

strategy.

Testability is discussed above as an important factor in regards to automation. This is an

issue that would be appropriate to cover in the test strategy as a policy. The strategy may

state that the architecture should be designed with testability in mind and also contain a

description of what testable architecture means in the particular organization. It would be

beneficial to involve the developers, testers and managers when taking these decisions so

that they do not feel uncomfortable with these definitions. If this is not done, the strategy

will probably be ignored and the effort wasted.

2.5 Relevant methods, approaches and strategies
There are numerous frameworks available that covers different criterions. Several testing

frameworks are available which supports the automation of test cases, not only to automate

the test cases themselves but also to adapt other frameworks to fit several application

domains. This section will introduce frameworks, methods and strategies that are considered

to be useful primarily in the test consulting domain where the testing criteria often change

but also as possible solutions to the challenges discussed in section 2.4. In table 2, a brief

overview can be found for each method, approach and strategy that will be further described

in this section.

Title or Author Overview

Directed Automated Random Testing

[Godefroid05]

An approach which automatically generates test

drivers and automatically parses component

interfaces to also generate test cases. Uses the

structural visibility to direct the execution to

particular branches.

Structurally guided black-box testing

[Kantamneni98]

Combined a black-box with a white-box

approach to guide the automated testing. Targets

nested branches which are considered hard-to-

reach.

A framework for practical, automated

black-box testing of component-based

software [Edwards01]

An approach which tests individual components

by providing test case wrappers with an entry

point to the component under test. Automatically

generates both test drivers and test cases.

 25

Korat: Automated Testing Based on

Java Predicates [Boyapati02]

Uses formal JML specifications of the system to

derive the acceptable behaviour and

automatically generates test cases with java

predicate methods. Also generates test oracles

which check the results from the predicate

methods.

Feedback-directed Random Test

Generation [Pacheco07]

A recent approach which start by automatically

generating test sequences by using a random

testing approach. Then it continues by using the

results from the previously executes test method

sequences in order to guide the testing.

Systematic Method Tailoring

[Murnane06]

This method enables current black-box

techniques to be broken down into atomic rules

[Murnane05] which later can be used to tailor

black-box methods to suit specific software

domains.

JUnit [Beck98] This is a unit testing framework based on the

xUnit family. It enables developers to write

executable test cases for their Java based source

code in a relatively easy way. The foremost used

framework in the test-driven development

paradigm.

JBehave [JBehave07] A unit testing framework similar to JUnit which

focus on the validation of behaviour instead of

the unit design. Can be used for the unit testing

process in behaviour-driven development.

Table 2 – Section overview

2.5.1 Directed Automated Random Testing
Godefroid et al. has proposed the DART approach (Directed Automated Random Testing)

which aims to provide complete automation of the testing procedure thus removes the need

of manually writing test drivers [Godefroid05]. The approach has been divided into three

distinct techniques by Godefroid et al. and these are described below.

• Automated extraction. Extracts the interfaces provided by the application that

is to be tested. An internal stack that corresponds to these interfaces is then

built into the memory structure of the DART application. The purpose of this

stack, besides knowing the function inputs, is to keep track of the current

branches that have been tested.

• Automated generation. By interface examination, test cases that aim to

provide random testing towards the interfaces are generated.

• Dynamic analysis. When the initial vector has passed through the application

during execution, the results are checked. If a defect has been detected, this is

reported.

In article [Godefroid05] the technique is described for C code, but it could probably be

applied to any language if these syntaxes are considered in the implementation of the

automated extraction module. The most interesting issue, besides the fact that the approach is

completely automated, is that the branch that has been covered is marked as done in the stack

and a dynamic calculation is done. In this phase, the program tries to generate test vectors

that will reach certain branches that not yet have been covered. This is done dynamically

through analyzing the results from the previous execution and thereby generating a test

vector that will reach the next branch through execution.

 26

This approach has several benefits opposed to pure random testing. First of all, it can be

determined if a branch can be covered at all thus conclude if it is reachable which is also

mentioned in [Godefroid05]. Secondly, because the test vectors are calculated and not

randomized after the initial attempt the testing time can be decreased. This is due to the

unnecessary exhaustive testing that is avoided in this approach which is necessary for pure

random testing to be efficient. The approach could also be beneficial if the testing strives for

high coverage. Because the test vectors are issued through calculations with the branches as

a basis, no unnecessary execution is needed. An additional advantage identified by the

authors of [Godefroid05] is that every defect which is discovered is guaranteed to be correct

thus no false positives will be issued. However, if the internal structures are not known, this

approach would not be appropriate whereas it can be considered a white-box approach to

testing.

2.5.2 Structurally guided black box testing
This framework which was introduced by Kantamneni et al. [Kantamneni98] combines

black-box testing with white-box testing due to the difficulties of getting high branch

coverage through using a strict black-box approach.

It has been identified that these nested control statements are particularly hard to cover and

in regards to this assumption, a new term called potential of a branch has been introduced by

Kantamneni et al. [Kantamneni98]. Kantamneni et al. describes a potential as being basically

a count of the nested branches in the code that not yet has been covered by the test cases.

The main focus of this approach is to cover these hard to reach, nested control statements. In

order to do this, a so called guiding mechanism has been introduced by Kantamneni et al.

which are used to steer the test cases towards these hard to test branches. This mechanism is

used after the easier branches have been covered, which is done initially. A more detailed

description of this approach can be found in [Kantamneni98].

The founders of this approach have put the approach to the test in an experiment described in

[Kantamneni98]. However, the applications used in the experiment had a low code size

which could affect the results in the sense that the industrial applications where the approach

would be appropriate often contain much more lines of code [Kantamneni98]. In any case,

the experiment showed that the application interfaces had to be adapted for the sake of

interoperability which may not be feasible in industrial applications. However, for these

particular applications it was concluded by Kantamneni et al. that overall, the approach gave

larger coverage and less needed test vectors than a standard random testing approach. An

interesting observation made by Kantamneni et al. is that low testability affected the result in

one of the applications where the approach gave the same result as the random testing

approach. It can be argued that if the tested applications have been implemented with

testability in mind would favor this approach in regards to the number of test vectors needed.

Granted, by using black-box testing it may be hard to cover certain branches and this

approach may be appropriate to increase the coverage of hard to test branches which indeed

exist in many applications. However, black-box techniques are mainly considered when the

internal structures are not known and if this would be the case, this approach could not be

used due to the involvement of the white-box specific techniques.

2.5.3 A framework for practical, automated black-box testing of

component-based software
Software components today are often built with reuse in mind due to the cost benefits that is

gained through the build once and reuse approach. Edwards has recognised this and

developed an automated test framework for reusable software components which is

described in [Edwards01]. This approach has three main parts as also described by Edwards;

• Automatic generation of built-in test (BIT) wrappers. A BIT wrapper surrounds the

component under test. It contains two layers with the inner layer connected to the

 27

actual component. It has been concluded by Edwards that these wrappers should not

interfere with the normal behaviour of the tested component and that the component

should not be altered for the sake of the wrapper.

• Automatic generation of test drivers. By parsing the component interface, test

drivers can be automatically be generated.

• Automatic generation of test cases. This step includes the generation of component

test cases as well as the generation of test oracles which are to check that the input

and output corresponds to a correct behaviour.

As described by Edwards, the purpose of the two layer approach is to have the inner layer

responsible for checking the internal component state while the outer layer handles input and

output checking in regards to the client code operations. Careful consideration has been

taken to not affect the client code which uses the component in the production code

[Edwards01]. To note here is that the oracles also should check that the production code does

not try to use the component in an incorrect way [Edwards01]. This means that for both

incorrect inputs and outputs to and from the component, notifications are to be made from

the oracle [Edwards01].

For the automation to be efficient when using the approach, the components should be

described in a formal behavioural language and in the trial the components are describes

using the RESOLVE language [Edwards01]. If this is not the case, it requires human

interaction for the creation of the test cases and wrappers [Edwards01]. This is also the main

difficulty in using this approach in the sense that formal languages are rarely used in

industry. If the behavioural description is not present, the correct behaviour must be

established through the stakeholders or else the correct input and output of the built-in tests

cannot be verified by the test oracles.

As described by Edwards, the approach has been evaluated for simple component and the

approach needs to be evaluated for more realistic industrial components to better ensure the

validity [Edwards01]. This approach could be beneficial to use due to its attractive

automation focus for black-box components but in organizations which have informal

behavioral descriptions of the components; much manual labor is still needed with the

approach.

2.5.4 Korat: Automated Testing Based on Java Predicates
The object-oriented programming language Java has a large set of various data structures

that can be used for different purposes. Java predicates are simply methods which return

Boolean values depending on the outcome of the method call. Boyapati et al. has introduces

the Korat framework which tests Java structures with the use of these predicates

[Boyapati02]. This includes a complete automated test suite where test cases, test oracles are

generated based on a formal class description based on the Java Modeling Language (JML).

As mentioned earlier, it may be hard to convince developers to adapt formal modeling

languages and this is partly because the transition to formal modeling requires that persons

change their way of thinking. However, as also mentioned in [Boyapati02], by using

modeling languages with likeness to the programming language itself, the transition these

programmers face are now limited.

To briefly introduce this framework, the following discussion is largely derived from

[Boyapati02] where a complete description can be found. By automatically deriving class

information from the formal JML specification, a skeleton of a Java predicate is

automatically generated. This is done by checking the acceptable input and outputs described

in the language as well as what constitutes an exception. These predicates can be considered

as the automated test cases provided by the framework. The purpose of them is to return

either true or false, depending on if their internal structures find defects in the tested Java

structures. When the test cases are executed, it depends on the type of data that is entered, if

 28

it is valid or exceptional data sent to the structures. A valid data set should trigger the

acceptable output and the invalid should result in the exceptional behavior described by the

formal model. Test oracles are also generated which executes these test cases and interpret

the results thus increasing the automation. There are two primary strengths of this

framework, one being the partitioning of the search space with is done by pruning away

unnecessary test cases. The other is the division of candidate objects into separate domains

which results in that only one candidate from each of these domains needs to be executed for

sufficient test results. Boyapati et al. considers the framework to be effective which can be

traced to the search pruning technique and search space partitioning used by the approach.

However, due to the fact that programmers need to modify the test cases manually from time

to time, this framework cannot be considered completely automated but it does provide large

automation benefits.

2.5.5 Feedback-directed Random Test Generation
Random test generation is a commonly used approach that basically produces tests randomly

for a given set of methods. The random approach has been shown to be effective because it

gives high code coverage [Yong05]. However, as mentioned by Pacheco et al., other

approaches such as chaining may give larger coverage than the random approach

[Pacheco07]. This may be because the technique does not reason about particular branches,

paths or statements which could be vulnerable. Instead it generates and hopes to get as high

coverage as possible through the execution. Also, if the test results are not analysed before

running additional tests, redundant and unnecessary tests may be produced and executed in

the consecutive testing cycle [Pacheco07].

In a recent paper, Pacheco et al. introduces a technique based on random test generation with

the distinction of using feedback from previously executed test cases. A detailed description

of this approach can be found in [Pacheco07] which is the basis for this section. One of the

main features of the approach is the use of sequences which basically is a sequence of

method calls which are going to be executed in the test case. Pacheco et al. introduces an

interesting notion of reducing the needed test cases. For each new sequence that are

generated, the old ones are examined to make sure that no test redundancy is issued to the

collection, the purpose being to maximize the unique number of states that a particular object

can enter. The creation of new sequences is referred to as extending the suite of sequences by

Pacheco et al. As for the algorithm, there are four primary attributes that needs to be

considered;

• Classes. This is collection of classes that are going to be tested by the sequences.

• Contracts. One of the most interesting attributes is the contracts collection. This

specifies what to consider when executing the sequences. In the default setting as

mentioned by Pacheco et al., the API description for the classes is used to determine

if the behaviour is accurate. An advantage with the approach is that the number of

contracts can be increased by the user thus it enables the testers to derive the

contracts based on behavioural descriptions. These can, for example, be derived

from user stories which are common in the agile environment. The results of testing

against these contracts are also evaluated by the automated test oracles contained in

the approach.

• Filters. To restrict the extension of the sequences and thereby the search space,

filters are used which could be feasible in several cases such as when a sequence are

known to produce a specific behaviour at some point in the method. Pacheco et al.

gives an example in [Pacheco07] where a run-time exception is known to happen at

a specific point in the method. Thereby it would be unfeasible to use this sequence

for further creation of new ones in the sense that the method will stop at that known

point either way.

• Time limit. Every testing technique contains some way of knowing when to stop

testing and this is called a stopping criterion. This particular approach used a time

limit to restrict the testing which is sent initially to the algorithm.

 29

The evaluation described in [Pacheco07] concludes that Feedback-directed Random test

generation can give high coverage but more importantly, high defect discovery. This

approach seems attractive because of the expected high coverage and ability to tailor

contracts. It could be used for behavioral testing as well in regards to requirements because

of the ability to create custom-made contracts. However, this approach needs further

evaluation so that the industrial value can be established because the current evaluation only

covers framework classes provided by the Java and .NET libraries.

2.5.6 Systematic Method Tailoring
It has been recognised by Murnane et al. that there can be difficult to adapt current black-box

testing techniques to fit different application domains and they propose an approach for

dividing current techniques into atomic rules [Murnane05]. Different black-box techniques

target specific types of defects and some of these techniques may target some of the same

types. The approach divides these techniques into distinct rules, the number depending on

how many different scenarios that the technique cover. A rule in this sense can be, for

example, a test of a specific item such as a lower boundary check connected with either

invalid or valid input depending on the purpose with the test. As can be realised, the most

commonly used techniques have large sets of these atomic rules which implies that not all

can be used in every single application domain. By the technique breakdown to atomic rules,

each rule can be executed alone to test if the output given by the specifications is achieved.

Because every single rule may not apply in all domains this also gives an advantage in the

sense that distinct rules may now be selected to match the current domain and project which

means that the redundancy of using several complete techniques are avoided.

Murnane et al. has also proposed the Systematic Method Tailoring approach [Murnane06]

which is based on the Atomic rule approach. This approach is quite interesting because it is

used to tailor black-box approaches to be efficient in distinct project domains. With this

approach the atomic rules can be collected into the rule set by using three separate

procedures as also described in [Murnane06];

• Selection-Based tailoring. By applying this procedure, the rules are taken from

current black-box techniques and put into the rule-set.

• Creation-Based tailoring. Often, the tester experiences are used to test software

artefact rather ad-hoc and it has been recognised by Murnane et al. that it is

beneficial to support this [Murnane06]. In this procedure, the rules by the testers

themselves based on their previous experiences in the particular domain.

• Creation-Based tailoring via Selection. In this procedure, existing rules are the basis

for creating new rules i.e. they are combined in order to create a new rule for the

rule-set. As mentioned in [Murnane06], the instincts of the testers are often used to

combine rules in black-box testing techniques which make this support attractive.

These approaches combined could be very useful in the consulting domain both because of

the frequent domain change that consultants experience and the possibility of reuse. Test

cases can be written for a particular rule and when this rule is selected for use in another

domain, this test case can be modified or directly used in that domain as well.

2.5.7 JUnit
JUnit is an executable testing framework that enables developers to write automated test

cases for classes, methods and packages they have written using the Java programming

language [Beck98]. In organizations where Unit testing is adapted, the JUnit and other xUnit

frameworks are the ones that are primarily used. This can be traced to their early arrival to

the development community but also to the simple structure of the frameworks. The benefits

imposed by unit testing frameworks have been recognized by several IDE vendors. Netbeans

and Eclipse for example, has built-in support for JUnit which makes test case creation for

particular classes, packages and individual methods a couple of clicks away. It also

 30

facilitates test-driven development since the test cases can be developed prior to the

implementation of the production code. Of course, it will not compile until the production

code is implemented which is good since it ensures that the source code will be designed

based on the test case in order to get a compilation.

Example 4 – JUnit code example

A typical JUnit test case is shown in Example 4 where an instance method is tested for a

class and the result is validated for accuracy. An interesting feature of the framework is that

the assert methods can be tailored which has been done for the assertEquals method in the

example. Instead of using the standard implementation, the method is overridden so that the

data contained in two User objects is compared to see if the data is equal instead of their

pointer address which is checked through the framework method. Note that the testAdd_user

method only tests that the Example class corresponds to its design intentions and that the test

does not related to any sort of functional requirement. In the next section, another framework

will be discussed which can be used to test for accurate behavior of units.

If other test cases are to use objects similar to the Example ex variable, these can be put as

instance variables of the class that extends TestCase in the JUnit package to save resources.

Such instance variables are called a Test Fixure which is further described by Beck and

Gamma in [Beck98].

Example 5 – JUnit fail example

As mentioned, the test aims for validation of the expected output for a unit and a failing test

case is showed in Example 5 where the test described in Example 4 has failed. As can be

seen in the JUnit GUI illustration in the example, a failure trace is given so that the test case

can be examined and thereby the failing source code unit. In this case, the code returned null

instead of the expected User instance, shown in Example 4.

 31

Example 6 – JUnit success example

Now, because of the early feedback in terms of a failing test case, the developer can alter the

production code under test directly and rerun the test case(s) that failed. In example 6, it is

shown how the JUnit GUI looks after a successful test run as illustrated by the green color

and a zero count of both errors and failures.

Some of the most interesting concepts in JUnit will be described briefly below as an

overview of the framework structure.

• TestCase. Classes that contain JUnit test case methods inherit from this class. This is

also where a possible test fixture can be placed to share resources between test cases.

A test case typically contains several test case methods, each of which tests some

aspect of the same unit of code which means that the unit test responsibility is placed

on the whole test case class.

• TestSuite. This class is used to group several test cases together. A benefit of this

described by Beck and Gamma is that several individual developers can write their

own test cases and later group them together to one test suite which can be executed

as a whole [Beck98].

• Assertions. Every test case method can have several assertions such as the one

shown in Example 5. There exist a large variety of different assertion classes, for

example assertNotSame, assertNull and many others. The first parameter to most of

these is the expected value for the second parameter which can be an instance of a

class or some other return value from a method in the unit. When the assert method

sense that this value or object does not correspond to the expected one, the test case

has failed and a notification is given to the tester.

In addition to these classes, there needs to be some way of running the test cases and test

suites and this is done by a so called TestRunner. The framework delivers both a console-

based and a GUI based test runner. These runners visualize which tests that have passed or

failed, the GUI-based output from Eclipse is shown in Example 5.

2.5.8 JBehave
As opposed to JUnit, the JBehave framework [JBehave07] focuses on validating the

expected behavior of a particular unit which makes it suitable for behavior-driven

development methodologies. The framework is similar to the JUnit framework in regards to

its structure, classes and methods.

Example 7 – JBehave code example

The framework can test for several issues related to the functional requirements such as if

one method is run after another. In Example 7, a behavioral version of the JUnit illustration

shown in Example 4 is given. Instead of ensuring that the underlying structure of the unit is

operational, it tests a user story which states that it shall be possible to add a user to the

system. This responsibility is put on the Example object according to the

specification which makes it natural to use this unit for testing. A User object is returned

from the add_user method and to actually make sure that the User is added, the user_id of

this instance is again used through another method to ensure that

from the system.

Example 8 – JBehave fail example

The ensureThat method is quite similar to the assert methods provided in by the JUnit

framework and as shown in Example 8, this behavioral test failed and a failure trace

so that the test case can be found and the production code corrected.

pointer exception which was traced to an error of adding the user_id to the added user.

Example 9 – JBehave success example

And once again, the test case(s) can simply be re

have been fixed which the case as shown in Example 9 was.

JUnit and JBehave frameworks can be beneficial to have in any development setting due to

its simplicity and its advantage in regards to regression testing.

JBehave code example

The framework can test for several issues related to the functional requirements such as if

one method is run after another. In Example 7, a behavioral version of the JUnit illustration

n Example 4 is given. Instead of ensuring that the underlying structure of the unit is

operational, it tests a user story which states that it shall be possible to add a user to the

system. This responsibility is put on the Example object according to the systems

specification which makes it natural to use this unit for testing. A User object is returned

from the add_user method and to actually make sure that the User is added, the user_id of

this instance is again used through another method to ensure that the correct user is acquire d

JBehave fail example

The ensureThat method is quite similar to the assert methods provided in by the JUnit

framework and as shown in Example 8, this behavioral test failed and a failure trace

so that the test case can be found and the production code corrected. In this case, it was a null

pointer exception which was traced to an error of adding the user_id to the added user.

JBehave success example

test case(s) can simply be re-run to ensure that the failing requirements

have been fixed which the case as shown in Example 9 was. It can be concluded that both the

JUnit and JBehave frameworks can be beneficial to have in any development setting due to

ts simplicity and its advantage in regards to regression testing.

The framework can test for several issues related to the functional requirements such as if

one method is run after another. In Example 7, a behavioral version of the JUnit illustration

n Example 4 is given. Instead of ensuring that the underlying structure of the unit is

operational, it tests a user story which states that it shall be possible to add a user to the

specification which makes it natural to use this unit for testing. A User object is returned

from the add_user method and to actually make sure that the User is added, the user_id of

the correct user is acquire d

The ensureThat method is quite similar to the assert methods provided in by the JUnit

framework and as shown in Example 8, this behavioral test failed and a failure trace is given

In this case, it was a null

pointer exception which was traced to an error of adding the user_id to the added user.

run to ensure that the failing requirements

It can be concluded that both the

JUnit and JBehave frameworks can be beneficial to have in any development setting due to

 33

3 METHODOLOGY
This chapter will provide the design of the phases in the thesis project, starting with an

overview which describes the complete chain of activities. After this, each distinct phase and

its purpose will be presented by itself.

3.1 Overview

Figure 3 – Study design overview

As can be seen in Figure 3, the study was divided into five different phases which was

iterated throughout the thesis project. An extensive literature survey was conducted in the

former part of the study which resulted in relevant testing background for use in the

consulting study. In the consulting phase, the consulting domain and related challenges was

studied which resulted in useful information for the strategy development phase. This part

included development of the actual automated strategy as well as the customer guidelines

which was the primary focus of both the industrial and academic validation. To strengthen

the validity further, the report was iterated several times with the supervisor in order to get

valuable feedback which could be used to improve the thesis.

 34

3.2 Literature study

Figure 4 – Literature study design

In order to get the current state of research within the field of automated software testing, the

literature study was initiated as the first phase of the thesis project. Figure 4 shows that this

study was iterative, where careful consideration of each research paper was evaluated for

quality aspects and relevance. To increase the chance of sufficient research quality,

acknowledged literature databases was used and only peer reviewed material was issued for

review. The primary intention was to find research that was empirically evaluated since this

was considered important for the thesis. This importance was derived from the fact that the

proposed strategy in the thesis is indented for use in a live industrial setting and not foremost

an academic one. As can be seen in Figure 4, it was decided based on these premises if the

study should be included or discarded from the thesis. For each included research paper, a

summary of the most relevant parts for the study was chosen and discussed in the thesis. This

work was iterated to the point where the acquired background was considered strong enough

for the consulting study. However, at some points during the rest of the thesis project, this

phase was iterated once more in order to find support for issues related to the customer

guidelines and automated testing strategy.

 35

3.3 Consulting study

Figure 5 – Consulting study design

Fortunately, a test consulting firm offered the needed resources for the thesis. First of all,

interviews were scheduled with an automated test consultant at the firm so that an overview

of the automated testing practices could be acquired. Since the thesis author got the

possibility to be on-site at the offices of the test consulting firm, interviews could be

scheduled to coincide with the consultant pit stops to the offices. The interviewees were

selected in order to acquire a complete picture of the test consulting domain, from technical

specifics to test management and consulting management issues. Interview questions were

designed based on the specialization of the particular interviewee. For example, when an

interview was to be scheduled with a test manager, the questions were designed to elicit

information about test management issues in the customer projects. Also, more technical

aspects were covered through the interviews with the test automation consultant. The most

relevant information gathered from these interviews about the consulting domain, the

strategy and the customer guidelines was summarized into the thesis. Note from Figure 5 that

additional one-time interviews were scheduled with a customer of the test consulting firm

and a consulting development company (Jayway). The customer interview served as a

validation point which helped to improve the strategy and the guidelines based on customer

feedback of its perceived worth. A further discussion of the results from this validation point

will be provided in Section 7.

 36

3.4 Strategy development

Figure 6 – Strategy development design

By evaluation of the feedback provided by the consulting study described in Section 3.3, this

phase targeted the actual creation of the automated strategy and the customer guidelines. It

started out with initial feedback from the automated test consultant at Testway where it was

identified that the most common problem is related to the system requirements. This fact

along with the fact that the consultants use system and acceptance testing most frequently

formed the structure of the customer guidelines which serves as a complement to the

automated testing strategy. As these are closely related, it was appropriate to design them in

parallel as shown in Figure 6. The results were then validated through structured interviews

at Testway which either led to another iteration of the design or a satisfactory results which

initiated the academic validation. This extra validation process was needed in order to ensure

the validity of the study in academia. Note that the phase selection choice in Figure 6 refers

to the iteration of the literature study, the consulting study or the strategy development as

shown in the overview in Section 3.1.

 37

3.5 Academic validation

Figure 7 – Academic validation design

In order to strengthen the validity of the study further, one academic researcher within the

field of validation and verification was contacted so that his view of the academic worth of

the strategy and guideline could be assessed. As can be seen in Figure 7, an interview was

conducted once due to the given time constraints of the thesis project. The acquired data

from the interview was analyzed and a decision was made whether to improve the strategy

and guidelines or not. As it turned out, some modification was needed. Further academic

support was needed for the motivation sections in the strategy and the guidelines. Also, the

automated tool selection section was considered weak. These sections were expanded and

pointer support in terms of relevant research references was added. The overall academic

validation showed that the approach can be generalized to traditional development as well

since the pointers are not specific for consulting projects. Furthermore it was concluded that

the pointer structure is relevant and the purpose of the strategy is visible. However, this

researcher suggested additional academic validation by involving other researchers for the

requirements and metrics pointers since these was outside his area of expertise.

Unfortunately, this validation is left as future work since there was not enough time for these

additional validation meetings.

 38

4 TEST CONSULTING
This chapter starts with an introduction to firms in the consulting domain. Section 4.1 gives a

consulting overview and discusses the role of the consultant. The following section (Section

4.2) is focused on development and testing differences between consulting firms and their

customers. Next, a deep going discussion of the applied test consulting practices at Testway

is given. Common for all sections in the chapter is that the information is derived from

discussions with the development and test consulting firms in the case study which was

previously described in Section 3.3.

4.1 Introduction

4.1.1 Overview
In general, consulting firms employ persons which have strong competence in a specialized

knowledge domain and provide services to customers within this domain. The main

characteristic of a consultant is that the domain knowledge is generally greater for the

consultant than for a regular employee in the customer organization. Contracts are signed by

the consulting firm and the customer that describe the services which shall be provided by

the consultants. A general fact is that such contract is signed for a particular time period. If

there is time left after the task has been completed, it is usual for the consultant to suggest

additional tasks to be performed thus filling the gap in the contract. The opposite, however,

can be difficult since it can be hard to persuade the customer to accept additional task that

would affect the original contract or project deadline when it is discovered that additional

services is needed. Three different types of consulting contracts have been identified through

interviews with Testway and these are described in table 3.

Contract type Description Discussion

Project commitment. The consulting firm

takes full responsibility

for a development

project. The

development can be

done in-house at the

consulting firm or at the

customer organization

depending on the

customer arrangement.

The consultants cooperate and provide

specialized competence for each

development activity which reflects on

the quality of the software since the

process maturity can be expected to be

greater for each development area.

Component

commitment.

The consulting firm

takes full responsibility

for a particular project

component or

development phase. The

particular project

determines if it is

possible to do this in-

house at the consulting

firm or if it needs to be

performed in the

customer organization.

In case a development phase or project

component is considered important, it is

beneficial to involve consultants that can

provide strong knowledge and process

maturity within that particular field to

guarantee added quality.

Specialist

consulting.

The customer hires a

consultant for a specific

task where the domain

knowledge of the

The customer need not employ a full-

time person for the specific task.

Furthermore, since the consultant is

focused on the particular problem area

 39

consultant is related to

the specific task. When

the task has been

completed, the

consultant leaves the

customer organization.

while the employee often has broader

knowledge, the competence within the

task domain is generally greater for the

consultant. However, it is more

expensive to hire a consultant than to

use a regular employee.

Table 3 – Consulting contracts

The following chapter defines consulting firms as companies that employ several persons

and offer the services of these persons to their clients as consultants. It has been recognized

that some consulting companies try to make their consultants key persons in the customer

organizations. This way, the contracts can be prolonged and the number of leased personnel

increased. Others, including Testway, tend to avoid this with the motivation of keeping their

consultants flexible and their domain knowledge up-to-date. Since consulting firms differ a

lot on this point, the question whether or not to make the consultants key players in the

customer organization is still open for debate.

4.1.2 Role of the consultant
The primary responsibility of the consultant is to deliver the services described by the

contract within the given time frames. Before an assignment starts, the consultants often

make a plan based on the expected parameters of the particular project. Glass recognizes this

as a problem since it is hard to know the exact valid conditions for the particular customer

domain [Glass98]. It is important to realize that the plan may need alterations later on due to

unexpected issues that can come up at the customer site.

In theory it is sometimes appropriate to guide the customer in directions that differ from the

original problem statement. In other words, there is sometimes a need to convince the

customer that the actual problem is something else than was originally contracted. In practice

this can be a sensitive and hard issue to approach as a consultant. Some clients may feel

uncomfortable for an external person to tell them what to do. However, these persons are

also aware of the fact that problems do exist since the consultant contract has been initiated

in the first place.

4.2 Differences between consulting and standard

development

4.2.1 Development differences between consulting firms and their

customers
As previously described, several types of consulting contracts exist. For specialist

consulting, it is harder for the consultant to affect the development methodology since it

depends on the process maturity at the customer site. Since the process maturity varies

among the different customers, the difference between the used development methodologies

differs as well. However, for project and component commitment contracts, the development

methodology reflects the competence and process maturity in the consulting firm which is

generally high within their areas of expertise.

Through discussion with Jayway, which is a consulting firm that specializes in Java

development, differences between consulting and standard development been discovered.

The development methodology used in the in-house project commitment projects at Jayway

is very focused on testing aspects through the use of the test-driven extreme programming

paradigm combined with the scrum methodology [Schwaber01] for project management.

The consultants have determined that the quality awareness and test process maturity has

been high in these in-house projects. This has had a positive effect on the software products.

A comparison has been made to a particular customer project where the automated unit and

 40

integration testing practices were neglected since the project management had not scheduled

creation of executable tests. The test focus in this case was on the system test level which

resulted in a system testing which found relatively simple defects which should have been

found through unit testing. As previously described, system test shall focus on behavioral

aspects. When defects slip through the unit and integration test level to the system test, the

behavioral aspects of the system gets unreachable. The cost for system test increases because

it has to be iterated several times due to the fact that the unit and integration defects have to

be fixed before the next system test iteration. Another factor which leads to this increase in

cost is the added lead time for the testers which had to wait for the individual developers that

was responsible for the bug fixing.

4.2.2 Testing differences between consulting firms and their customers
Test consulting implies a focus on the validation and verification parts of the software

process. However, for specialist consulting assignments, it is common that the test

consultants only performs the system and acceptance testing at the customer site while the

customer system developers are responsible for the unit and integration testing activities. In

the current situation, such developers often have low test process maturity which comes from

lack of experience, education and proper attitude towards software testing. This also leads to

low amount of testing in the projects. Since the consulting firm may offer specialist

consulting assignments such as unit and integration testing education for developers the test

consultants can get involved in these levels as well but from a slightly different perspective.

When the consulting firm has been contracted for a project or component commitment, the

testing influence is generally greater since they are controlled by the boundaries of the

contract and not the higher management at the customer. In this situation, the development

and testing processes can be adopted according to the existing special qualifications residing

in the consulting firm. This may have positive effects on the software quality since the

development methodologies can be used where test educated developers write the unit tests

and where the system testers may influence the testability through the requirements and

design.

4.2.3 Gap between consulting and reviewed research
There are no studies to the knowledge of the author that describes how current research

within the field of software testing can be applied to a consulting setting in an efficient

manner. Much research assumes standard development in the project where items such as the

development methodology may differ but not the organization that surrounds it. This means

that the worth of this research within the consulting settings is unclear. For specialist

consulting assignments, the challenge revolves around the dynamic adaption of the research

approaches to different development states.

4.3 Consulting at Testway
As previously described, Testway tries to avoid making their consultants key players in the

customer organization. The precise time-span for a consulting assignment differs depending

on the wishes of the individual consultant. Three to six months is the preferred contract span

for one consultant that was interviewed during the case study while others prefer more long-

term contracts. There are currently eight consultants in the firm and one manager which

imply that the firm can be classified as a small consulting firm. Testway is considered to be a

test specialist firm where the consulting services constitute one part of the operation together

with other services such as education within their field of expertise. By providing education

through specialist consulting services, the knowledge of how to solve problems within the

testing area can be transferred to the customers directly and thereby avoid making the

consultants key players in the customer organization. This means that it will be possible for

the ordinary personnel to perform the testing practices themselves when the consultant

leaves the organization. However, many customers do not strive for education within the

field. Rather they need the consultant to perform some testing activities for them which is the

 41

most common scenario. It is also worth to mention that Testway has customers from several

applications domains from industrial automation companies to pure software development

firms. The size of the customer organizations also vary from small up to medium and large

scale companies.

As described earlier, three main types of consulting contracts has been identified and

Testway provides services according to all three of these. Table 4 gives a brief summary of

the consulting services provided within the three contract types at Testway. These are also

described at [Testway06].

Service Description Contract type(s)

Test management Consultant test managers plan,

manage and follows the test

practices in the customer

projects. These projects may

involve testers in the

consultant organization as well

as other consultant testers.

Project commitment.

Component commitment.

Specialist consulting.

Test process improvement The current test process in the

customer organization is

assessed and evaluated for

areas which could be

improved. This is done by

combining the Test Process

Improvement (TPI) model

[Koonen99] with the TPI

Automotive model [Sogeti04].

Specialist consulting.

Test strategy This service helps customer

organizations arrange and plan

testing practices for

organization wide or project

specific testing.

Specialist consulting.

Test automation Test consultants can

implement test automation,

identify automated testing

opportunities and suggest

automated testing tools for

organization wide or project

specific test automation.

Project commitment.

Component commitment.

Specialist consulting.

Load and performance

testing

Test consultants perform load

and performance testing on

selected software components

using automated testing tools.

Project commitment.

Component commitment.

Specialist consulting.

Training Testway offers seminars

within the field of software

testing as well as courses

which lead to test

certifications. Furthermore,

training on-site in the customer

organization is also performed

on demand.

Specialist consulting.

Table 4 – Testway consulting services

 42

4.3.1 Current state
Currently, there is no official automated testing strategy at Testway since it is hard to

develop a strategy which covers all customer assignments. Instead, the strategy is built ad-

hoc at the customer site, depending on the different variables in the particular project. The

consultants mostly act at the system and acceptance test level which implies that sufficient

requirements understanding are needed for the assignments. Unfortunately, it has been

recognized that the quality of the requirements in the customer projects vary depending on

the process maturity of the particular organization which becomes a testing problem when

the consulting assignment begins. This is also the reason why the company advocates the use

of development methodologies where testing initiated done early such as iterative and test-

driven development.

Currently, the requirements problems are solved on-site by speaking with the involved

stakeholders in attempts to elicit the requirements after development. In agile development

methodologies this may be only a minor problem since agility often has the benefit of close

contact with on-site stakeholders. Most customers intend to use some sort of iterative process

but unfortunately it is common that this end up with a more traditional approach where the

software product is delivered to the tester after implementation. It can be difficult to perform

requirements elicitation in the testing phase of such methodologies since the development

methodology does not require the presence of the original stakeholders in that phase of

development.

4.3.2 Test levels
The attitude towards testing differs a lot depending on test process maturity in the customer

organization. The customer decides which test levels are to be used and the test consultant

has little say in the matter. However, when the test management services have been

contracted, the influence possibilities are greater in comparison to the other services.

As mentioned above, the most common test levels used are system and acceptance testing.

The test consultants rarely act at the unit test levels since these tests are expected to be

performed by the developers themselves. Pyhajarvi and Rautiainen have recognized that this

is a common way of looking at the test levels in organizations which uses the traditional V-

Model [Pyhajarvi04]. However, if the test process maturity is low in the customer

organization, this practice is often done in an unguided manner or not at all. Because the

customer decide which consulting service to contract, it is hard to get them to realize that

proper unit testing can increase the quality of the software product in terms of added stability

and system level testability. In rare cases, customer organizations contract consulting

services which involve developer unit testing training at the customer site and this point to

high test awareness in the organizations. In the cases where the test maturity level has been

low it has been hard to convince the developers to adapt unit testing since they have

problems visualizing the expected benefits.

Table 5 gives two examples of previous unit testing consulting assignments conducted by

Testway. As mentioned above, the system test level is the most common level and two

typical examples of automated system testing assignment is given in the table as well.

Service Description Test level Contract type

Training The customer had started adopting

agile development in the

organization and set the branch

coverage goal to 95% for their unit

test cases. They initiated a consulting

contract for unit testing training of

their developers in the project.

Unit test

level.

Specialist

consulting.

Test automation Unit tests were required by the Unit test Specialist

 43

customer development policy which

is unusual in this domain and posed

the same requirement on the

consulting contract. This assignment

involved creation of automated test

cases in the customer project.

level. consulting.

Test automation and

training.

A regression test suite was required

by the customer and thus created by

the test automation consultant.

Furthermore, a test automation

framework was created to support

this regression suite which was to be

used by the developers themselves.

The assignment was concluded by

developer training of this framework.

System test

level.

Specialist

consulting.

Test automation and

test strategy

There was much legacy code in the

customer organization that did not

have automated tests. The automated

strategy that was compiled for this

organization determined that every

new feature and required bug fix

were to be automated but not the

existing code. This strategy proved

successful and resulted in a large

regression test suite which was

created by the test consultant.

System test

level.

Specialist

consulting.

Table 5 – Testway consulting assignment examples

4.3.3 Reuse challenges
There is no test case reuse strategy at the company but there is a sound reason for this. Since

the customers pay the consulting firm for the development and tailoring of automated test

cases, these test cases cannot leave the customer organization. However, there are

possibilities for reuse since each individual consultant gather their own set of domain

knowledge which can be shared with the other consultants that act in other organizations. In

other words, it may be possible to reuse the knowledge of the various consultants in order to

increase the total knowledge in the consulting firm. This is done to some extent already in

form of ongoing seminars where the different consultants share their experiences through

lecturing. As mentioned by one of the consultants at Testway, the individual knowledge of

test methodologies are constantly reused and improved in the sense that these are tailored to

fit into each new customer site. The notion of knowledge reuse has been taken into

consideration and is introduced as a step in the automated testing strategy which is further

described in chapter 5.

4.3.4 Customer development issues
Consultants can arrive in several phases of development and the most usual scenario is that

the consultant arrives in the testing phase in a waterfall-like development model. This can be

particularly hard for a consultant due to the learning curve often needed for sufficient testing.

It has been recognized by the consultants that the time schedule for the testing phase in

sequential development methodologies are often decreased in favor of the other development

phases. Most customers that use a traditional development methodology deliver an

implementation to the testers after it is completed. This means that the time spent on testing

is not actually the time that often is required but the time that is left after the other phases has

received their fare share of time. There have also been attempts to inform the management at

the customer site of the product quality drawbacks that this imposes. However, there has

been a trend that the management is more interested in meeting the deadlines than the

 44

delivery of a quality product. Note that managers may be willing to add more resources in

form of people to the testing project but not more development time. This is challenging

since the extra added persons needs to be brought up to speed and trained which take further

time from the actual testing. The project managers closest to the project commonly

understand the need for further testing but are often constrained by time schedules imposed

by higher management. On the upside, these facts are about to change since more and more

customers starts to realize the benefits gained by thorough software testing.

4.3.5 Automated testing
Not many of the customer organizations have gotten very far in the field of automated

software testing. It has been identified that this does not come from lack of developer

knowledge of automation but from higher level management that expect shorter development

time for each new project. Test automation is not scheduled since this is expected to increase

the development time. Creating automated test cases will cause initial development overhead

but compared to manual execution, overall execution time will be decreased for each test

case regression. This fact is often not taken into consideration when estimating the test

execution.

One interesting issue related to the automated testing practices at a customer is that the

developers had recognized a need for a commercial automated testing tool in several projects

but that the project manager did not want to spend project resources on a tool which were to

be used over the entire organization. This way, the purchase of the tool was postponed with

the intent that it could be bought in the next project where there were more resources.

However, the same problem of course occurred here as well. What can be learned from this

is that such purchases should be brought up to the organizational level so that the tools are

indeed brought into the organization. On the other side, it should be noted that careful tool

selection is needed to avoid the bias imposed by commercial tool vendors which only

displays how easy it can be to test certain items. Most often, the tools needs to be

complemented with manual testing due to missing features such as the inability to test

several applications sequentially. For example, a test application may be able to do a system

test on an application that adds data to a database while it lacks the possibility to launch a

test script that checks the actual database contents in sequence which could be appropriate

for the test case to be complete. In such case, a manual effort is needed for the test script.

Such chains of interactions are needed in system and acceptance testing since the levels test

implemented behavior which can be spread over several applications. This does not mean

that the test application should not be purchased but it does mean that it shall be noted that

such features is missing in the tool.

A typical scenario for automation is that the customer has some existing sets of manual test

cases that they want to automate in order to save resources in form of manual testers.

Usually, this type of assignment starts with a workshop where the customer and consultant

sit down and discuss which of these test cases would be appropriate to automate. Test

selection is used and the test cases up for automation are eventually prioritized. Factors such

as how tiresome the manual test cases are to do manually, how prone they are to change and

if they even can be automated is considered when doing this prioritization.

In most cases, it is not possible to automate every of the manual tests and the strategy instead

is to write executable test cases to get large system coverage. A technique that is used by the

automation consultants is partition testing where similar tests are gathered into collections

that corresponds to different parts of the system under test. This way, each part of the system

gets some sort of testing which is considered better than to focus the testing efforts to some

single component. However, for some customers there are critical components that needs to

receive higher priorities and in these cases, partition testing is not the most appropriate way

to go. In these test cases, it is usual to include techniques such as boundary checking.

Furthermore, a data-driven approach is often attractive for the test cases.

 45

The programming language used when doing automated testing depends on the language

used in development. Many projects are web based which leads to languages such as C# and

Visual Basic. Ruby is another language that is common in web based testing due to its

possibilities of testing code written using other languages.

It has been recognized by the consultants that it is important for the test automation that

testability is designed into the software. These assignments sometimes require the software

to provide so called software hooks so that the test cases can interact with through these

hooks to verify that a given input gives the correct output. If such issues are not taken into

consideration in the design it is hard to automate tests for certain components and application

types.

It has been recognized that the management at the customer site often require statistics about

the progress of the automated testing which is a sign that they are involved in the process to

some extent. However, the management tends to view the number of test cases as a good

measurement of this progress and not the quality of them which would be a better

measurement.

 46

5 CONSULTING AUTOMATED TESTING STRATEGY

(CATS)
This chapter starts with an introduction to the automated testing strategy where the scope and

motivation is described. Thereafter, an overview can be found which illustrates the strategy

as a flowchart. The core of the strategy is then discussed in the following three sections,

starting with the preparation phase which is then followed by the execution phase and finally

the post execution phase. There are some pitfalls that could be avoided when following the

strategy and some of these are discussed in Section 5.5 which is also the final section.

5.1 Overview
The automated testing strategy is developed for use by consultants that primarily deal with

test automation in software development projects but some parts of the strategy may be

useful for manual testing as well.

5.1.1 Strategy concepts
Strategy pointers in the following sections are distinct tips that can be applied in different

phases of the testing project with the intent to increase the efficiency of the testing practices.

The pointers can be applied independently of each other, depending on the parameters of the

current development project and organization. As for the different phases of the strategy,

these are not to be confused with the phases of the used development methodology since the

strategy phases are independent of the development methodology. The main concepts of

these phases are to increase software testability and stability, increase the effectiveness of the

test execution and to improve the strategy and customer guidelines with the execution results

as the input source. The pointers are structured so that the test consultant can assess the

pointers independently and choose which pointers that applies in the current development

phase.

5.1.2 Strategy scope
In section 4.1.1, it was stated that there are several forms of consulting and the primary scope

for this strategy is to be efficient in specialist consulting projects where the test input comes

from development projects where other teams has done the actual development. It may be

possible to adapt the strategy to project and component commitment projects as well but this

is out of scope for this thesis.

5.1.3 Severity scale
The severity scale in table 6 is used by the “Prioritize defects” pointer which can be found in

Section 5.3.2. As mentioned for the particular pointer, the found defects need to be

prioritized so that the most critical defects can be found in the defect report. Of course, if the

organization has a defect reporting system which has another priority scale, this could be

used instead since the main point is that the defects should be prioritized in one way or

another.

Severity Description

5 Critical defect

4 Serious defect

3 Defect

2 Minor defect

1 Insignificant defect

Table 6 – Severity scale

 47

5.1.4 Automation prioritization scheme
The prioritization scheme in table 7 is used by the “Prioritize the tests selected for

automation.” pointer in Section 5.3.1. The pointer describes that the test selected for

automation should be based on the corresponding requirement prioritization and this scheme

is meant to describe the importance of automating the test cases.

Priority Description

5 Critical

4 High

3 Normal

2 Low

1 Minor

0 Should not be automated

Table 7 – Automation prioritization scheme

5.1.5 Motivation statement
As mentioned, testability and stability is important for the quality of the software release.

Because it is not always the case that the customer has the correct understanding of their

current problems in terms of automated software testing, it is necessary to guide this

understanding in some situations. Furthermore, if the consulting firm can motivate the use of

advanced testing methodologies in favor of increased software quality, it also increases the

value of the service set provided by the firm.

If the customer contacts the consulting firm in the start-up phase of their development

project it can be appropriate to take some measures to ensure that testability and stability is

reached. Otherwise, when the customer organization has low testing maturity, the

requirements for example may not be testable due to ambiguities. Furthermore, insufficient

use of unit and integration testing also introduces low stability which affects the system

testing. The system test may find defects that should have been discovered by previous test

levels, defects that differ from the goal of finding behavioral defects.

To alleviate these problems, the preparation phase is introduced where such issues are

handled. Unfortunately, it is not always possible to have such a large impact in the customer

organization so the strategy must cater both for situations where we have and situations

where we do not have a high level of testability and stability in the target system. This is why

the execution phase provides pointers that can be applied even when the testability and

stability has not been affected in the preparation phase. This is needed since the test

execution will differ due to the issues that the preparation phase is expected to handle. The

strategy needs constant improvements in order to stay efficient and effective. This is the

reason for the post execution phase which is the last phase of the strategy. Here, the test

execution is analyzed to find areas in which the strategy is weak or not up-to-date with the

current state-of-the-art in automated testing and software development. This can then lead to

strategy improvement proposals and discussions.

 48

5.1.6 Structure of strategy

Figure 8 – Automated strategy overview

As shown in Figure 8, the strategy consists of three main phases; Preparation, Execution and

Post execution phase. Note that the strategy phases are independent of the development

methodology and should not be confused with the development phases of the current

methodology. Each phase of the strategy has a set of tasks, each of which is responsible for

some aspect of the total quality assurance process. The purpose of the strategy is to increase

the efficiency of the testing, both within the current project as well as other projects in the

consulting organization. The testability and stability are the first targets of the strategy as can

be seen in the preparation phase in the figure which is necessary in order to facilitate the test

automation which is done in the execution phase. The execution phase is where the actual

testing is performed and where the test methodologies are adapted to the current situation.

Metrics should be collected during execution so that the test results can be documented and

reported to the management. The metrics also serve as a means of strategy and guideline

improvement which is done in the post execution phase. Note that this phase also includes

knowledge reuse which aims to improve the total knowledge within the consulting firm so

that the experiences collected by the individual consultants are shared. The figure illustrates

 49

that the strategy phases are iterative which means that the actual strategy is iterative even if

the current development methodology is sequential.

For example, if the project uses the traditional waterfall model where the software is

delivered to the consultants in the test phase, the testability and stability focus in the

preparation phase should target future releases from the organization since it is too late to

affect this for the software under test. When the tool selection step is started, the current

testability and stability should be assessed so that it can be determined what related problems

the tool needs to circumvent in the execution phase.

5.2 Preparation phase

Figure 9 – Preparation phase

An overview of the steps in the preparation phase is given in Figure 9 which also illustrates

the involved items and actors for each step in the phase. As can be seen in the figure, the

phase consists of three steps; Project testability and stability, Customer training and Tool

selection each of which will be introduced in this section. Many factors can impact the

testability and stability in late phases of development such as complex design and ambiguous

requirements. In order for the customer to get full value of the consultant services they need

to facilitate testing by considering such factors in early development. The preparation phase

is the first step of the strategy which begins with customer preparation since it aims to affect

the testability and stability of the customer project in a positive direction. This can be

considered the hardest step in most situations since customers seldom realize the importance

of early testing activities, testable requirements and testable design which makes it hard but

necessary to influence this. In the traditional waterfall model for example, it is hard to affect

the testability and stability of the current release when it has been delivered to the testing

phase. However, the preparation phase of the strategy may be used to affect the testability

and stability of upcoming releases or projects since it is designed to increase the test process

 50

maturity of the entire customer organization. The first subsection focuses on the testability

and stability of the software development projects and gives advice on how this could be

increased. This is followed by the customer training step which may be required if the

customer organization has agreed to adopt certain guideline pointers. As can be seen in

Figure 8, these two steps are optional since it may not be possible to influence the customer

organization for one reason or another. The final subsection deals with issues that should be

taken into consideration when choosing among different automated tools for the test

execution.

5.2.1 Project testability and stability
As mentioned, system and acceptance testing targets the requirements with the distinction

that the input to the acceptance testing comes from the customer while the inputs to system

testing come from the testers or developers. The main difference between the strategy and

the guidelines which are provided in Section 6 is that the guidelines are intended for

customer use and the strategy is indented for consultant use. The guidelines in Section 6 are

indented to influence the testability and stability of the software development projects at the

customer site. Table 8 contains a pointer which aims for increased testability and stability of

the software development projects at the customer site.

Pointer Description Motivation

Customer

guidelines.

Try to convince the

customer of the

testability and stability

benefits gained by

adopting the guidelines

in Section 6 in regards

to the consulting

services which they

need.

As a test consultant it is important to realize

that it is your responsibility to make sure that

sufficient testing is performed. When there

are problems with the software testability and

stability this issue should be dealt with in

order to give the customer full value of the

consultant services. The importance of

testability for test automation is also

recognized by Pettichord in [Pettichord02]

where three main issues are identified as

important in this regard; Cooperation

between testers and developers, team

commitment and early involvement of the

testers.

Table 8 – Project testability and stability pointer

5.2.2 Customer training
Training on how to use the guidelines can be an effective way to help the customer increase

the testability and stability in the project. Introduce this as an optional step to the customer

and if the customer is willing to accept such training, let consultant train the developers in

how to use the guidelines. Table 9 contains pointers that focus on customer training issues.

Pointer Description Motivation

Developer and

manager

persuasion.

Persuade the developers and

managers of the benefits that are

gained with the adoption of the

guideline pointers. Bring forth

previous quality results that can

be traced to the guideline

adoption at the particular

organization where this was

visible. Since it is likely to have

several customers which act in the

same application domain, the

primary focus should be to show

It is important to convince the

developers and managers of the

benefits that come out of each

relevant guideline pointer since the

adoption level will decrease if these

are not visible. As mentioned by

Pettichord, it is important to have a

full team commitment if high

testability is to be achieved in the

software projects [Pettichord02]

which can be achieved by

convincing them about the benefits

 51

previous successful results from

an application domain similar to

the current one.

that comes with this type of

testability.

Developer

training.

If the concepts of the pointers

require education, provide proper

training so that the pointers can be

successfully implemented by the

developers themselves. Gable

addresses the importance for the

consultant to have a superior

knowledge set compared to the

ones held by customers in the

domain [Gable03]. With this in

mind, make sure that the concepts

are properly understood prior to

the developer training.

Without proper understanding of

the pointers, these may not be

implemented to deal with the goal

for which they were intended. In

this case, the testability and

stability will not be increased to the

extent that was intended.

Table 9 – Customer training pointers

5.2.3 Automated tool selection
It is most common to use some sort of automated testing tool, framework or script language

for the creation of the automated test cases. There are several tools available for automated

system testing such as Watir [Rogers07], SilkTest [Borland07] and many more, each of

which has its own advantages and disadvantages. However, organizational needs should be

considered as well as the customer setting before acquiring a tool. In case a commercial tool

is considered, its applicability in several application domains should be considered as well,

otherwise the tool may end up on the company shelf and never be used again which probably

means that the return of investment for the tool will be low. In addition to this, many tools

lacks the ability to perform specific subtasks which are usually performed manually after the

test case has been executed. Make careful assessments and involve consultants from other

project in order to get a united view of the tool under observation so that such missing

features are brought forward and discussed prior to the assignment.

Since automated system testing tools such as SilkTest uses a record and playback approach,

it assumes that the functionality is in place prior to the test case creation which implies that it

cannot be used in a test-driven development setting where the test cases should be produced

prior to the production code. In such cases, consider script based languages that can be used

to communicate with applications through some communication protocol such as the

Component Object Model for a windows setting [Microsoft07].

Note that for the system testing phase, it is important to choose a tool that can target the

current system requirements in an efficient manner, an issue that should be considered in the

selection as well. Table 10 describes key factors that should be considered when doing the

tool selection. Note that in order to stay efficient, this list is supposed to be extended as new

factors are discovered at customer sites.

Pointer Description Motivation

One-time

projects.

If it is unlikely that a

similar project is to be

conducted in the future,

it is appropriate to select

a tool where the learning

cost combined with the

purchase cost does not

outweigh the current

Be careful to purchase tools to the

organization that is unlikely to be used in the

future since one project will probably not

produce the return of investment needed for

the purchase and learning time of a particular

tool. Poston and Sexton mentions that testers

needs training in tool operation, tool input

preparation and tool output use and mentions

 52

expected return of

investment.

that these three activities should be included

in the cost estimations when considering the

tool [Poston92].

Consider

execution

analysis.

Many tools lack

sufficient execution

results analysis. This

may require additional

analysis to be done

manually after the tool

has been executed. The

expected costs for this

should be considered

when selecting the tool.

As previously described, an oracle is a

program that automatically checks the results

from a test execution. It has been recognized

by Yang et al. that most tools still require

some human interactions for creating the test

oracles [Yang06] which should be based on

the behavioral specification. The results

analysis is a large and important part of the

total test case execution and if the tool has

little oracle support, it may be appropriate to

look for another tool. This importance has

also been recognized by the development

consulting company where the case study

was conducted.

Test case design. Design the test case

structure prior to the

tool selection. Then

select a tool which has

the proper support for

the implementing the

test suite. In other

words, do not let a

particular tool guide the

test case design.

The stability of the test suite decreases if it

has to be designed to cope with the

limitations imposed by an already selected

tool. It has been recognized by test managers

at Testway that unstable test case design

increases the maintenance time of the

automated test case suites.

Integration

support.

Ensure that the tool has

integration support for

the development

environment used in the

project.

The importance of this tool feature has been

elicited through an interview with a

development consulting firm. This coincides

with their continuous integration practice

since the build-in support for unit testing

speeds up the test execution.

Tool evaluation. Conduct a tool

evaluation of current

available tools where

the tools are compared

against each other with

the current project

parameters as the

relevant support

criterion. Poston and

Sexton have proposed a

structured method for

conducting tool

selection which could be

used for guidance

[Poston92].

A complete review may be needed for the

tool selection to be efficient. As mentioned

by Poston and Sexton, if the results from the

tool evaluation are not quantifiable, the

managers may not be convinced that the tool

is worth purchasing [Poston92]. With this in

mind, a structured evaluation would be

appropriate so that the most appropriate and

efficient tool is chosen.

Table 10 – Automated tool selection pointers

5.3 Execution phase

 53

Figure 10 – Execution phase

An overview of the steps in the execution phase is given in Figure 10 which also illustrates

the involved actors for each step in the phase. As can be seen in the figure, the execution

phase contain four steps; Test selection, Metric selection, Method tailoring and Test

execution and measurement. The execution phase contains pointers which should be

considered when starting the actual test execution. This section starts with a subsection that

focuses on issues that should be taken into consideration when doing a test selection for a

particular project. Section 5.3.2 considers metrics that should be collected during test

execution. Section 5.3.3 describes how to tailor the testing methodologies towards the

different customer projects and domains. The last section describes how to perform the

actual test execution and how to measure the execution based on the metrics chosen in the

metrics selection step.

5.3.1 Test selection
The test selection is important for quality assurance purposes since it affects the quality and

test execution performance if unimportant items are selected for testing. Table 11 contains

pointers which should be taken into consideration when performing this test selection.

Pointer Description Motivation

Design

walkthrough.

Try to get the developers to

provide a design walkthrough

so that this information could

be taken into consideration in

the test selection. Document

these meetings in some

manner, for example, audio

recordings or written summary

notes.

Since discussions with Testway has

shown that many projects lack the

needed design documentation, it

would be appropriate to collect this

information through other means

such as a design walkthrough.

Furthermore, Aurum et al. has done a

research review in the field of

software inspections which is similar

 54

to walkthroughs [Aurum02]. In this

review they conclude that such

inspections are considered cost-

effective in regards to defect removal

and increased software quality.

Prioritize the tests

that are selected

for regression

test.

Prioritize the automated tests

according to the relevant

criterion. There are techniques

available such as the Echelon

approach by Srivastava and

Thiagarajan which uses binary

versions and the coverage

information about the old

version to determine the most

effective prioritization of the

regression test suite

[Srivastava02].

Since time and resource constraints

may affect the amount of tests that

can be executed, it is important to

have priorities for the test cases so

that this can be taken into account

prior to the execution. Furthermore,

as recognized by Srivastava and

Thiagarajan, effective test

prioritization can save time and

resources in early development

[Srivastava02]. Furthermore, is has

been empirically proven by Elbaum

et al. that the fault detection rate

differs a lot depending on the used

prioritization technique [Elbaum00]

which makes technique selection an

important issue.

Prioritize

components.

If automated tests are to be

developed for developed

system components that do not

have previous manual tests,

special attention should be put

on the component criticality.

Furthermore, have regression

testing in mind and estimate

how many times the test needs

to be executed. If changes to

the component may affect

other components, the test

would probably need to be re-

executed several times.

As described by Kaner in

[Kaner97b], it is not economically

defendable to automate tests that

only need to be executed a few times

due to the large initial overhead in

creating, verifying and documenting

automated test cases.

Prioritize the tests

selected for

automation.

Prioritize the tests that are

selected for test automation.

Since tests that are considered

hard to execute manually are

hard and time consuming to

automate [Keller05], these

should be given lower priority.

The prioritization should be

based on the requirement

prioritization and the scheme

in 4.1.4 would be appropriate

to use for setting this priority.

Also provide a motivation to

why the priority has been set.

As mentioned by Keller et al. tests

that are hard to do manually are even

harder to automate [Keller05]. This

implies that such manual tests should

be given lower priority since these

will probably not give a sufficient

return-on-investment.

System

partitioning.

Investigate the system

structure and define partitions

so that tests can be

categorized. In this way,

system coverage can be

This way, each system partition gets

some amount of testing which is

beneficial in case full coverage is not

possible. This has been proven

successful in some of the automated

 55

measured. After this has been

done, select tests with a fairly

even spread over the different

partitions.

testing assignments done at Testway.

Follow the test

automation

manifesto.

Create test cases that are easy

to read and maintain. The test

automation manifesto

described in [Meszaros03]

provides guidelines towards a

more maintainable test suite.

Meszaros et al. recognized the

importance of maintainable test

suites and developed the test

automation manifesto which serves

as guidelines towards this type of

maintainability [Meszaros03]. It is

also mentioned in [Meszaros03] that

the authors have created automated

test cases that require less refactoring

when following the manifesto.

However, since this study has yet to

be empirically evaluated, the impact

on testability has not been proven.

Table 11 – Test selection pointers

5.3.2 Metric selection
In order to judge the effectiveness and efficiency of the current testing practices, they need to

be quantified and measured. To do this, a relevant set of metrics should be collected during

test execution. These metrics should later be used as an indication of the current quality of

the software product. Furthermore, they also serve as a means of improvement for the

customer guidelines. Table 12 contains relevant metrics that can be used during the test

execution.

Metric Description Motivation

Requirements

coverage.

Measure the requirement

coverage of the system. As

mentioned by Lipaev, the

requirements coverage

analysis should determine two

things; How complete testing

that has been achieved in

regards to the requirements

and what additional test cases

are needed in order to achieve

full coverage [Lipaev03].

Lormans et al. describes

requirements views as a means

of keeping track of the

requirement test coverage and

propose a method for this type

of requirements traceability in

[Lormans06].

In case a system test is performed,

the requirements coverage is a good

quality measure since it can be

determined how much of the

functionality has been tested.

Number of

defects.

Note the number of defects. According to a consultant at

Testway, the project management in

customer organizations is often

interested in the number of found

defects which they use as a quality

indication. Collect this number to

satisfy the demand.

 56

Prioritize defects. Prioritize each defect

according to a classification

scheme. If there are no support

for this in the defect reporting

tool used, use the severity

scale found in Section 5.1.2. If

no defect reporting tool is

currently used, Bugzilla

[Bugzilla07] is recommended

since it has advanced reporting

features.

Since it is possible that every defect

cannot be scheduled for immediate

attention, it is important for the tester

to provide an indication of the

severity of the found defects.

Log execution

time.

Log the execution time for the

first execution of a test case. If

the system partitioning pointer

described above is adopted it

could be beneficial to measure

the execution time for an entire

partition instead since a single

test case has low execution

time.

Since large test suites can take

significant time to execute, each test

case should be measured in terms of

time so that the time for a full

regression test can be estimated prior

to the execution. As mentioned by

Hayes this can also be useful in order

to find performance problems

[Hayes95]. With this measure in

hand, the most critical test cases

could be scheduled depending on the

available time left for test execution.

Test execution

progress.

Keep a progress report of how

many tests that have been

executed and how many of

them has failed. This pointer

applies if the test execution

spans over several days. The

progress report should be

updated on a daily basis.

First of all, if the testing time gets

cut, it serves as a quality measure

since it can be determined in

percentage how much of the system

that has been tested. Secondly, it can

serve as a stability measure. For

example, in the case where 40 out of

50 test cases failed in execution, the

software release was probably not

ready for system testing in the first

place. It is also recognized by Galli et

al. that a single defect often results in

several failing test cases [Galli03]

which can be a result from this type

of low system stability.

Note defect

cause.

Note the cause of a found

defect or failure. Note that a

system test may not reveal this

information but it can help the

debugging process if this can

be provided.

The noted defect causes are

important for future projects since

these could be used to convince the

management to allocate resources for

further guideline pointers. They

could also be useful for the

enhancement of the guidelines as

indicators of how well an adapted

pointer works in practice. If the

defect causes is not related to the

intent of the guideline pointers that

are adopted it can be an indication

that the guideline pointer is not

implemented correctly.

 57

Resources. Note how many people that are

involved in the testing along

with the time spent for each of

these.

This information is needed for the

validation of the roles section in the

guidelines. The need for resource

allocation information was elicited

by an interview with a consultant test

manager at Testway which

considered this to be needed

information for convincing upper

management to adopt the guideline

pointers.

Table 12 – Metric selection pointers

5.3.3 Method tailoring
Since the starting time for each testing project differs, the methodologies used needs to be

adapted to fit in to the particular state of each given project. In table 13, a tailoring pointer is

presented which can be useful. Keep in mind that the table is not final and should be

extended or modified when the pointer efficiency is measured.

Pointer Description Motivation

Adapt the test

methodology.

Adapt the test

methodology to fit the

current customer project

parameters. Consider

the systematic method

tailoring approach

introduced by Murnane

et al. in [Murnane05].

This approach breaks

down black-box

methods to individual

rules, each of which can

be combined to form a

hybrid method which

could be applied to the

current situation.

As mentioned above, Murnane et al.

recognized difficulties in the using black-box

testing techniques in different application

domains [Murnane05]. As their approach

deals with changing application domains

which includes the consulting domain, this

approach could be appropriate to use for the

method tailoring process done by the

consultants.

Table 13 – Method tailoring pointer

5.3.4 Test execution and measurement
In this phase, execute the tests and measure the results in regards to the selected metrics. It is

important to ensure that sufficient data is collected for each relevant metric so that is actually

can be used in the metric evaluation step in the post execution phase. Table 14 contains

pointers which should be considered in this step which related to both the actual execution

and the test measurement activity. As for the other tables, these are not final so these are

expected to be adapted and improved when their worth is proven in industrial projects.

Pointer Description Motivation

Requirements

traceability.

Log each found defect

to some tracking system

where the corresponding

requirement is stored as

well.

This is important for the traceability issue

since the requirement version may be

changed prior to the bug fix which can be

confusing when looking at the bug report.

The importance of being able to trace a

defect to its corresponding software artifacts

has also been recognized by Yadla et al.

which also propose an Information Retrieval

technique that focus on defect to

 58

requirements traceability [Yadla05].

Analyze results. Even though the

selected tool or test

script includes a test

oracle, the correctness

of these should be

verified prior to

reporting the issue as a

bug.

Issuing false positives as defects to the

reporting tool may take focus of the more

serious defects. This is why careful

consideration should be taken in order to

verify that a defect actually has been found.

The importance of limiting the number of

false positives was elicited through

discussions at Testway.

Use

parameterized

tests.

Develop test cases that

take input through

method parameters.

By using parameterized, also called data-

driven test cases, the actual input data may be

developed in the consulting organization and

thereby reused among several customers. As

mentioned by Tillmann, the tests can be

instantiated by other test cases with a range

of input parameters which differs from

traditional test cases which are restricted to a

particular set [Tillmann05]. This typically led

to fewer needed test cases since the created

ones can be reused in the same manner as

ordinary methods which also decrease the

maintenance time of the test suite.

Table 14 – Test execution and measurement pointers

5.4 Post execution phase

Figure 11 – Post execution phase

 59

An overview of the steps in the post execution phase is given in Figure 11 which also

illustrates the involved items and actors for each step in the phase. As can be seen in Figure

11, the phase involves three steps; Metric evaluation, Knowledge reuse and Guideline

improvement which are introduces below starting with the metric evaluation step.

5.4.1 Metric evaluation
This step involves the evaluation of the metrics that was collected during the execution.

Keep in mind that the evaluation should focus on the current customer project but also as a

means of improvement for this strategy and the customer guidelines. Table 15 contains

pointers which should be taken into consideration when evaluating these metrics.

Pointer Description Motivation

Combined focus. Focus on the strategy

and guidelines

improvement as well as

the current customer

product.

Since the strategy and guidelines are intended

to increase the quality of the customer

products, it is important to keep these up-to-

date with the current state of the art with in

the field of software testing.

Evaluate tool Use the metrics to

evaluate the efficiency

of the automated testing

tool. Appropriate tool

evaluation checklists

can be found in

[Poston92].

Poston and Sexton recognize the importance

of measuring the company work products

quantitatively [Poston92]. These results serve

as a means of estimating the return on

investment.

Table 15 – Metric evaluation pointers

5.4.2 Knowledge reuse
Since the consultants are spread over several customers and application domains, each

individual faces specific challenges related to these domains. If this knowledge can be

reused, the total knowledge in the consulting firm can be increased which benefits customers

in projects other than the one where the experience was collected. Gable mentions that the

knowledge held by each individual can be divided into codified and un-codified knowledge

where the former can be transferred fast while the latter is related to individual actions and

experiences and thereby more difficult to reuse [Gable03]. However, Gable has recognized

that both types can be transferred which could be useful within the consulting firm in order

to stay competitive and up-to-date. Table 16 contains pointers related to the knowledge reuse

issue.

Reuse step Description Motivation

Seminars. Let the consultants hold

seminars from time to

time where the

interesting experiences,

challenges and solutions

are shared in the

organization.

This practice was already initiated at Testway

as a means of in-service training for the

consultants, a practice called Test forum at

the company. Gable mentions guided

learning, formal training and knowledge

creation activities as factors for successfully

sharing individual knowledge with other

individuals in a group [Gable03].

Experience

reports.

Collect interesting

challenges and solutions

from the individual

assignments to an

organization wide online

forum.

Since each individual consultant gather

personal experiences through their

assignments, it could be beneficial for

knowledge collection in the entire

organization if these are shared. However,

Gable mentions that individual experiences

and action patterns are better shared through

 60

direct communication [Gable03] so this

pointer should applied for codified

knowledge which Gable considers to be

easier to transfer.

Table 16 – Knowledge reuse pointers

5.4.3 Guideline improvement
The customer guidelines are designed with extensibility in mind since it has been recognized

that flexible adaption to customer domains are important for the life span of these guidelines.

After the metric evaluation step, there is sufficient information available that can be applied

when making this improvement and the pointers in table 17 are recommended.

Step Description Motivation

Adopted pointers. Assess the metrics

collected about the

adopted pointers and

check to see how the

pointers can be modified

for increased success in

regards to project

testability and stability.

It is important that the guideline pointers are

kept up-to-date with the customer project

state since the test process maturity are

expected to increase for each project that

adopts a certain set of pointers.

State-of-the-art

research.

Search for recently

made, empirically

evaluated case studies

that have been done in

the field of software

testing in order to find

new inputs for the

guidelines and the

strategy.

Since the organizations needs to be informed

of the benefits gained by adopting the

guideline pointers, it is appropriate to find

new pointers and support old ones through

studies which has proven their worth.

Table 17 – Guideline improvement pointers

5.5 Strategy pitfalls
The following section describes some possible pitfalls of the strategy which should be

considered and thereby avoided throughout its use in the organization.

5.5.1 To ambiguous automation
Often, organizations tend to set up high automation coverage goals which may not be

economical viable. It should be noted that it may not be suitable to automate every test case

in a software project. Economical aspects should be considered prior to the automated test

case creation. For example, if a test case is expected to be executed once, it is not

economically viable to automate. Furthermore, every pointer in the strategy may not be

applicable for every organization so the most appropriate ones for the particular assignment

should be chosen.

5.5.2 Low testability
Since automation is dependent on high testability for the test case design, the test automation

may become limited if the customer optional steps are neglected. To limit this effect, the low

testability issues should be taken into consideration in the tool selection step prior to the

execution phase.

5.5.3 Selling the guidelines to practitioners
It can be hard to sell the guideline pointers to software practitioners even with sound

motivations if the test process maturity is low at the organization. This issue could be dealt

 61

with by expanding the motivation sections so that the worth is proven from angles which are

more desired by the given customer.

 62

6 CUSTOMER GUIDELINES
This chapter describes the guidelines that are meant to increase the test process maturity and

thereby the testability and stability in software development projects at the customer site

where consultants perform the system and acceptance testing. It starts with an introduction

section where the needs are motivated along with an overview to the guideline design. The

identified current challenges in the consulting domain are related to requirements and

neglected verification practices in the early phases in the development projects where the

consultants act. Section 6.2 provides requirements pointers which targets the requirements

engineering practices in the software development organizations. Section 6.3 deals with the

second set of challenges which relates to neglected verification practices and gives pointers

to general practices which can be used to test and design the system in the early phases of

development in favor of the system and acceptance test.

6.1 Introduction
As a complement to the automated testing strategy developed for use by test consultants, the

following guidelines is intended for the customers and provide directions towards more

testable and stable software applications in the customer projects. The guidelines are divided

into so called pointers and each of these gives a specific tip of what should be done to

facilitate the system and acceptance test. These pointers are intended to be implemented by

the developers in the customer projects and be motivated by the consultant test manager by

using the motivation sections for each pointer. As previously described, without system

testability and stability in the release, the lead time for the consultant testers will increase

which in turn decrease the efficiency of the system and acceptance test. The guidelines has

been designed based on consultant experience and empirically evaluated studies which

proves their usefulness in development projects. Adoption of the pointers will increase the

system testability and stability in the development projects and this will maximize the return

of investment of the consulting services when the contract has been signed for the system

and acceptance test.

6.1.1 Motivation statement
Historically, consultants have struggled with challenges related to the requirements and lack

of early verification practices in the development projects when the system and acceptance

testing have been initiated. For example, when a requirement is too complex, a test case

cannot be properly traced from the failing source code entity to a single corresponding

requirement. Of course, it is possible to fix such defects in most situations as well but it can

be very time consuming which in turn leads to unnecessary cost. For example, in some

consulting projects, it has been necessary to rewrite the requirements at the customer after

implementation so that the system and acceptance testing could be performed. In another

project, the release was so instable when delivered to the system test due to lack of early

verification activities that the release needed to be sent back to the developers for bug fixing

after minimal system testing. This in turn increased the lead time for the consultant testers

since the system test could not continue before the defects had been fixed. If such effort

could be avoided, it would save resources that could be spent elsewhere. As a first initiative

towards solving these issues, guidelines that target such problems have been developed

which is intended to help the customer to facilitate system and acceptance testing. These,

together with the automated testing strategy developed for the consultants will hopefully

bring the quality of the software development projects forward.

6.1.2 Guideline concepts
As a reference, this section will start by comparing these customer guidelines with the

Capability Maturity Model Integration (CMMI) [CMMI02]. CMMI contains two different

kinds of representation which are introduced in [CMMI02] as continuous and staged

representation. The continuous representation in CMMI uses capability levels and is

 63

organized so that the order of processes to improvement can be selected by the organizations

without the restrictions that the staged levels impose [CMMI02]. The staged representation

on the other hand contains maturity levels each of which has predefined sets of process areas

and the process improvement shall be done in a predetermined order [CMMI02]. Capability

levels focus on a specific process area contrary to the maturity levels which span several

process areas. The common idea is to start the process improvement at the first level and

work towards the higher levels. The customer guidelines differs but can still be compared to

the continuous representation in CMMI since they are designed for organizations which need

to focus on specific process problems instead of improving the complete process chain. This

led to the concept of guideline pointers which is the basis of the customer guidelines.

Figure 12 – Guideline pointer concept

Guideline pointers in the following sections are distinct tips for process improvements that

can increase system testability and stability in order to facilitate the system and acceptance

test. As illustrated in Figure 12, the pointers informs and motivates software practitioners of

appropriate process improvement activities and these practitioners then choose which

process to improve based on the current process state in the organization. The guidelines

pointers have been designed to be independent of each other so that separate sets of pointers

can be compiled and thereby customized for specific customer settings. Two main challenges

have been identified as the basis for these pointers; requirements engineering practices and

lack of early verification activities in the development projects. Since it has been recognized

that design for testability is important for system and acceptance testing, such pointer has

also been included in the general verification pointer section. A guideline checklist which

summarizes the upcoming pointers can be found in Appendix A which can be used by

developers at the customer site to verify that the planned pointers have been implemented.

6.1.3 Prioritization legend
Table 18 describes the prioritization levels which can be found in the guideline tables. Each

pointer below is prioritized according to this table and the priority has initially been

subjectively assigned according to the experience of the author. The pointer prioritization is

expected to be modified in the post execution phase of the automated testing strategy after

the guidelines has been evaluated based on the collected metrics.

Priority Description

5 Critical

4 High

3 Normal

2 Low

1 Minor

Table 18 – Prioritization levels

 64

6.1.4 Pointer table legend
For each pointer in the guideline tables below, there are five attributes attached. These are

described in table 19.

Headline Description

Pointer A descriptive name of the pointer

Description The actual pointer which describes what should be influenced in the customer

project.

Motivation A motivation to why the pointer should be adopted.

Priority The priority refers to the criticality of the pointer. The priority will

dynamically change based on the metric evaluation in the automated testing

strategy. (Prioritization legend can be found in Section 6.1.3)

Roles The roles section contains the team roles that are affected by the pointer

adoption.

Table 19 – Pointer table legend

6.1.5 Structure of guideline pointers

Figure 13 – Guideline pointer structure

As illustrated in figure 13, the customer guideline pointers are structured into two main

categories; Requirements engineering and general verification pointers. As for the

requirements engineering category, three requirements engineering phases has been

considered especially important for system level testability and these phases have been

divided into subcategories as shown in the figure. It has also been identified that

requirements are specified in different manner depending on if the development

methodology is agile or plan-driven. This is why the requirements specification subcategory

is further divided into development methodology independent, agile and plan-driven

pointers. The other main category, General verification, has been introduced in order to

strengthen the system stability by early verification activities in the projects. Since

verification differs to a great extent between agile and plan-driven methodologies, this

section has been subcategorized into such sections.

6.2 Requirements engineering pointers
Requirements engineering contains several distinct phases and three of these have been

identified as important for the testing practices, namely the elicitation, analysis and

specification phases. Each of these contains challenges in regards to system and acceptance

testing. The following section provides a set of pointers which relates to each of these

phases. In many cases in industry there are low requirements engineering maturity and these

guidelines provide pointers which can be adopted at several maturity levels so that

 65

organizations can choose which pointers that is appropriate, if not all. The testability is

expected to increase for each pointer that is adopted.

6.2.1 Requirements elicitation pointers
In some organizations, a completed requirements documents are handed over to the

development organizations by their customer with the purpose of acquiring some sort of

software system. However, the most common initiation of a requirements phase is to elicit

requirements from a relevant set of stakeholders. Since the software is based on the

requirements, it is important for both the development and the software testing to have solid

requirements elicitation. Table 20 gives pointers on what needs to be considered in the

elicitation phase in order for the system and acceptance testing to have a good basis later on.

Pointer Description Motivation Priority Roles

Ask reasoning

questions.

Ask questions

that forces the

stakeholder to

reason and

motivate the

requirements.

In the market-

driven context,

this pointer

could be

applied in

workshops with

market sample

representatives.

According to Pitts and Browne,

this type of reasoning increases

the stakeholder comprehension

[Pitts07] which in turn leads

to increased accuracy of the

requirements. Test consultants

at Testway have recognized the

importance of accurate

requirements for system and

acceptance testing. This is

because a found defect may be

accurate behavior according to

the requirements understanding

of the developers which often

differ from the consultant

understanding of the same

requirement.

3 Requirements

engineers

Customers

Prioritize

requirements.

Prioritize each

requirement

using an

appropriate

prioritization

method such as

AHP or CV

which are

described in

[Berander05].

In some cases, full system

testing is not possible. If the

requirements are not prioritized

in these situations, it is difficult

to make an efficient selection

of requirements to put under

test. This in turn can lead to

non-optimal system testing

since the selection may be at

random. Turk has also

recognized the importance of

requirements prioritization and

considers implementation costs

as a primary factor to consider

in this phase [Turk06].

4 Requirements

engineers

Testers

Customers

Avoid

asynchronous

questioners.

Avoid using

asynchronous

questioners

(where the

answers are

expected at

later dates).

Lloyd et al. conducted an

empirical study where it was

concluded that asynchronous

questioners lowers the quality

of the requirements

specification [Lloyd02].

3 Requirements

engineers

Customers

Table 20 – Requirements elicitation pointers

 66

6.2.2 Requirements Analysis pointers
The analysis and the elicitation phase are often done in parallel. When a requirement has

been elicited through for example a stakeholder workshop it should be analyzed to ensure

that it fulfills certain parameters such as measurability and more importantly for testing,

testability. Table 21 contains pointers that should be considered when doing this analysis.

Pointer Description Motivation Priority Roles

Avoid

dividable

requirements.

Try to avoid

requirements that can

be broken down into

several requirements.

Dividable requirements

are possible to test but

it is hard to trace a

failing test case to a

particular requirement

if it is dividable. A

consultant at Testway

mentioned that this can

be a problem when the

consultant arrives in

late development

phases.

4 Requirements

engineers

Ensure

measurability.

Ensure that it is

possible to measure

the fulfillment of non-

functional

requirements.

A general fact about

requirements is that

they should be

measurable and

verifiable. Turk gives a

couple of example of

terms that should be

avoided such as “Easy”

and “Fast” in [Turk06]

with the motivation that

such terms means

different things

depending on the

reader.

3 Requirements

engineers

Testers

Ensure

requirements

testability.

Base test-related

questions on the

requirements in order

to ensure that they are

possible to test. If the

question cannot be

answered, the

requirement probably

needs modification.

According to Gelperin,

asking these types of

questions early is more

important for software

quality than the actual

test execution

[Gelperin88].

4 Testers

Avoid

contradictions.

Make sure that the

different requirements

do not contradict each

other.

If a set of requirements

contradict each other, it

is possible that a test

case is passed based on

the wrong conditions.

4 Requirements

engineers

Analyze

assumptions.

Verify that the elicited

requirements are

based on correct

assumptions.

If the requirement

differs from the one

wanted by the

customer, the testing

will be inaccurate in

any case. Pitts and

Browne addresses the

5 Requirements

engineers

Customers

 67

importance of

challenging the made

assumptions

continuously since

requirements tend to

start out with some

level of ambiguity

[Pitts07]. As mentioned

above, test consultants

address the importance

of requirement

understanding since it

affects the system

testability due to the

possibility of false

positives in the defect

report.

Table 21 – Requirements analysis pointers

6.2.3 Requirements specification pointers
It is important to document in a way so that a common understanding between developers

and stakeholders is achieved. However, there is also a need to increase the tester

understanding, especially when the tester has not taken part in the actual development. Plan-

driven and agile methodologies differ a lot when it comes to requirements representation

since the latter aim to minimize the overall development documentation in favor of

flexibility. The pointers have therefore been divided into three categories; Development

methodology independent, agile methodology and plan-driven pointers. These pointers are

presented in table 22, 23 and 24 starting with the ones which are development methodology

independent in table 22.

6.2.3.1 Development methodology independent pointers

Pointer Description Motivation Priority Roles

Consider

requirements

traceability.

Ensure that defects can

be traced back to their

corresponding

requirements when the

system and acceptance

testing begins. For

example, Yadla et al.

reports that

Information Retrieval

techniques have been

proven successful in

tracing requirements to

their corresponding

defects [Yadla05].

If the failing

component cannot be

traced to its

corresponding

requirement(s) it is

hard to determine

which part of the total

requirements has

failed. This importance

has also been

recognized by a test

consultant at Testway

which considers this to

be a common issue.

4 Requirements

engineers

Developers

Testers

Ensure

understandabil

ity.

Ensure that the

specified requirements

are possible to

understand by all

stakeholders,

developers and testers

in late development

phases.

Damian et al.

conducted an

empirical study where

the perceived need for

requirements

understanding in late

development was

evaluated [Damian03].

About 85% of the

5 Requirements

engineers

Developers

Customers

Testers

 68

asked engineers

perceived that such

understanding had a

large impact in the test

phase.

Table 22 – Development methodology independent requirements specification

pointers

6.2.3.2 Agile methodology pointers

Pointer Description Motivation Priority Roles

Store

rationales.

Store the rationales

behind why a

requirement exists.

Sauer has introduced

the Event-Based

Design Rationale

Model for storing such

rationales in an agile

setting and describes

this further in

[Sauer03].

Documenting rationales

can avoid confusion for

both developers and

testers in later phases.

As previously

mentioned, Sauer

mentions that such

rationales are beneficial

for an individual which

has not been involved

when the decision was

made [Sauer03].

3 Requirements

engineer

Allocate time

for

workshops.

Allocate time for

future workshops with

the consultant tester

where the

requirements are

discussed in the case

when the consultant

has not been involved

during early

development.

Such workshops are

useful for agile testing

since the

documentation can be

expected to be

incomplete.

3 Managers

Requirements

engineer

Developers

Customers

Testers

Complement

user stories or

backlogs with

test stories.

Make simple test

stories attached to the

user stories or backlog

(depending on the

requirements

representation) with

brief testing

suggestions for the

feature. Also, let

another developer

read the test story to

ensure that the

meaning is clear.

User stories or backlogs

are often the only

documentation of

requirements in agile

settings. This is why it

would be appropriate to

at least make sure that

these are

understandable and

testable.

2 Developers

Testers

Table 23 – Agile methodology requirements specification pointers

6.2.3.3 Plan-driven methodology pointers

Pointer Description Motivation Priority Roles

Avoid

ambiguity.

Make sure that there is

no room for several

interpretations of the

requirements.

If the requirements can

be interpreted in

several ways, the tester

may pass a test that

4 Requirements

engineers

Testers

 69

Rosenberg et al.

describes further

relevant tips and

metrics that are

important for

achieving high quality

requirements in

[Rosenberg98].

actually should fail

due to a

misinterpretation. The

ambiguity issue is also

recognized by

Rosenberg et al. as a

requirement quality

factor which can affect

the system and

acceptance test

[Rosenberg98].

Store

rationales.

Store the rationales

behind why a

requirement exists.

Detailed descriptions

are appropriate for this

development setting

since time with the

customer often cannot

be guaranteed in late

development phases.

Documenting

rationales can avoid

confusion for both

developers and

consultant testers in

late phases. Sauer

recognizes that such

rationales are useful

for individual which

has not been involved

when the decision was

made [Sauer03].

4 Requirements

engineer

Ensure

requirements

comparability.

Ensure that the

requirements are

comparable to each

other. The

Requirements

Abstraction Model

(RAM) has been

developed by

Gorschek and Wohlin

for the market-driven

domain. By using this

model, the

requirements can be

abstracted or broken

down into four levels

of abstraction which

serves to make the

requirements more

comparable to each

other [Gorschek06].

Gorschek and Wohlin

have identified that

comparable

requirements are

necessary for effective

prioritization and

release planning

[Gorschek06].

3 Requirements

engineer

Structure

requirements

in logical

order.

Structure the

requirements

specification in a

logical order.

Damian et al. has

identified good

requirements

specification structure

as important for

propagating the system

features among

stakeholders

[Damian03].

3 Requirements

engineer

Table 24 – Plan-driven methodology requirements specification pointers

 70

6.3 General verification pointers
Depending on the development methodology, it may not be possible to affect the

requirements when these guidelines are introduced since the consultant may arrive at

different stages of development. Tables 25, 26 and 27 provide general pointers that can be

applied to both design and implementation-specific items in order to increase the testability

and stability in favor of the system and acceptance testing. Since agile methodologies usually

differ a lot from plan-driven ones in regards to the testing practices used, the pointers for

these has been divided into two separate sets.

6.3.1 Development methodology independent pointers
Pointer Description Motivation Priority Roles

Maintain the

requirements.

Update the

requirements when

system changes

occur.

Even if small changes

are issued, the

represented

requirements should be

updated to reflect the

change. As mentioned

by Graham, even the

smallest changes can

have large impacts on

the testing [Graham02].

4 Requirements

engineer

Developers

Use change

management

routines.

Store the rational for

accepted changes.

If the rational is

neglected, it may be

difficult for a tester to

understand the correct

system behavior which

is crucial for the test

case design.

Furthermore, as

described by Sauer,

these rationales can also

illustrate dependencies

between different

decisions taken during

development [Sauer03].

3 Change

control board

Developers

Involve testers

early and

continuously.

Involve the testers

early and continuous

throughout the

development phases.

Graham has identified

that such early

involvement of testers

can save time and

resources since this

leads to early defect

detection and thereby

early feedback to

developers [Graham02].

3 Managers

Testers

Design for

testability.

Consider what needs

to be tested by

automation early on

and provide software

hooks for the input

and output to these

components.

Pettichord gives

further practical

advice on how to

Testway has recognized

that if the applications

do not provide access

points to the critical

components, they are

hard or impossible to

test through automation.

Pettichord has also

recognized the

importance of testability

5 Designers

Developers

Testers

 71

make the software

testable for test

automation in

[Pettichord02]. Gao

et al. introduces

testable beans which

can be used to

facilitate testing in

component based

software [Gao02].

Also consider using

testability anti-

patterns [Baudry03]

to ensure that the

design patters used

gives sufficient

testability.

for test automation. Gao

et al. mentions that high

component testability

may decrease the overall

testing cost [Gao02]

which is another

important factor in

software development.

Furthermore, as

described by Baudry et

al. bad design decisions

can increase the testing

time needed to test the

system [Baudry03].

Table 25 – Development methodology independent general verification pointers

6.3.2 Agile methodology pointers
Pointer Description Motivation Priority Roles

Enforce test-

first practice.

Ensure that the test

cases, especially the

unit tests, are

implemented prior to

the relevant

production code.

It can be tempting to

abandon the practice

where the test cases

are written prior to the

production code due to

expected increase in

development time.

However, this often

led to larger overall

development time

since the maintenance

time may be greater

without the test-first

practice according to

an interviewed

development

consulting firm.

Furthermore,

Erdogmus et al.

conducted an

empirical study where

the results showed that

the involved test-first

practitioners were

more productive than

the ones that tested

after implementation

[Erdogmus05].

5 Developers

(Possibly

testers if

customer

training is

needed)

Create simple

unit tests and

follow the

automation test

manifesto.

Keep the

implemented unit

tests simple; set an

appropriate

maximum limit of

the line of code for

If a unit test case

contains a large

amount of code it can

be a sign that the unit

under test are to

complex and needs to

4 Developers

(Possibly

testers if

customer

training is

needed)

 72

these that will be

upheld in your

particular project. A

similar tip along with

11 more can be

found in the Test

Automation

Manifesto introduced

by Meszaros et al. in

[Meszaros03]. It is

recommended that

this manifesto is

considered before

implementing the

unit test cases. Also,

consider the

Feedback-directed

Random test

generation approach

introduced by

Pacheco et al in

[Pacheco07] when

creating the unit

tests.

be broken down.

Brown and

Tapolcsanyi discuss

the importance of

keeping the unit tests

easy to write and easy

to use with the

maintenance needed

for large unit test

suites in mind

[Brown03]. This

importance has also

been recognized by

Meszaros et al. and is

discussed in

[Meszaros03].

However, as

previously mentioned,

the test automation

manifesto has yet to be

empirically evaluated

which means that the

impact on testability

has not been proven.

Furthermore, as

previously described,

previous research

concludes [Pacheco07]

that Feedback-directed

Random test

generation can give

high coverage but

more importantly, high

defect discovery.

Use code

coverage

through

personal code

ownership.

Let each developer

have personal

ownership of their

developed code.

Then use a tool

which tracks the unit

test coverage of the

checked-in code.

The applicability of

this pointer has been

successfully proven in

a consulting

development firm

where interviews have

been conducted. By

the introduction of a

companywide code

coverage goal, the

personal sense of

responsibility has

increased in the

organization since

each downfall in

coverage can be

directly traced to an

individual developer.

Note that if the

extreme programming

methodology is used,

4 Managers

Developers

 73

this pointer could

collide with the

collective ownership

practice proposed by

Beck in [Beck99].

Table 26 – Agile methodology general verification pointers

6.3.3 Plan-driven methodology pointers
Pointer Description Motivation Priority Roles

Allocate

sufficient time

for testing.

Allocate testing time

along with the time

allocation for other

development phases.

Do this early to

ensure that the

testing phase gets

sufficient time for

quality assurance.

It is a common mistake

that testing time is

allocated too late in the

project according to a

consultant test manager

at Testway. This means

that the amount of

testing is determined by

how much time the

other development

phases needs. This can

be a major contributor to

poor software quality

since the testing

practices needs their fare

share of time.

3 Managers

Use

continuous

integration

practice.

Issue small releases

during the

development cycle

and focus on

continuous

integration with unit

test and integration

test coverage.

This is actually an

extreme programming

practice [Beck99] that

could be applied to the

plan-driven approach as

well. It has been

determined through

interviews with a

consulting development

firm that large releases

may decrease the total

automated testing

coverage. If the release

is to large and complex

when delivered to the

test phase, insufficient

code coverage is

common. This usually

turns out in a system

testing that only detects

small errors that cannot

be traced to

requirements, such as

null-pointer exceptions

that should be caught

through unit testing.

4 Managers

Developers

Testers

Table 27 – Plan-driven methodology general verification pointers

 74

7 DISCUSSION
This chapter contains discussions regarding the proposed automated testing strategy and the

customer guidelines. The first section (Section 7.1) provides a discussion of lessons learned

during the case study while Section 7.2 continues with a validity discussion based on four

types of validity. The last section (Section 7.3) contains describes how the research questions

has been answered during the thesis projects and give elaborated answers to each question.

7.1 Lessons learned
This section will provide a discussion of the perceived applicability of the proposed strategy

and guidelines in a live consulting setting. Since only static validation has been collected, the

discussion will be based on the opinions of the consultants at Testway, the opinions of one of

their customers and the opinions of the thesis author.

7.1.1 Strategy applicability
The applicability of an automated testing strategy within the consulting domain was

considered to be low by an automated test consultant at Testway due to the changing

parameters in the different customer environments. This opinion was taken into

consideration during the strategy creation which is the reason for the general nature of the

strategy and guideline pointers. Due to this generalization, the thesis author expects that the

flexibility of the strategy between customer domains has been increased compared to the

original design which had more detailed pointers.

Many of the pointers in both the strategy and customers guidelines refer to relevant studies

that further describe how to conduct certain practices. It is the opinion of the author that this

implies initial overhead in regards to learning time if the referred concepts are unknown at

the time of strategy adoption. However, the author also expects that the strategy efficiency

will be greater when these concepts have been accepted by the strategy practitioners.

Furthermore, it is the belief of the author that the guidelines have larger possibilities of being

adopted by the customers if the person who has taken the role as consultant test manager in

the strategy (Figure 9, Step 1) has complete understanding of the pointer benefits described

by the motivation sections.

7.1.2 Customer guideline applicability
In the initial stage of the strategy and guideline development, the guidelines were meant to

be delivered as a guide to the customers. The customers were then to follow these guidelines

themselves in their early development phases in order to improve the testability and stability

of the software project. However, the industrial validation showed that it would be difficult

to use the guidelines in this manner so these were modified in order to be used through a test

manager from the consulting firm. This way, the consultant test manager can convince the

developers to adopt the pointers and train them accordingly. This is also the motivation for

the empirically evaluated studies which supports the pointers in the guidelines. The

motivations are supposed to be used in the persuasion of the developers and management at

the customer site.

Due to this modification, a validity discussion with a consultant test manager was conducted.

Through this discussion, it was concluded that there indeed are problems in regards to the

test process maturity in many organizations which often infer low system testability and

stability. With this in mind it was also concluded that the guidelines is needed in order to

increase the testability and stability of these projects since the guidelines also motivate why

changes needs to be made. The test manager mentioned that it would be appropriate to

include information of which roles in the organization that needed to be allocated for

adopting each pointer. This was considered especially important since it was perceived that

managers would require this information to allocate resources for the pointer

 75

implementation. As can be seen in the guideline pointers in Chapter 6, a roles section exist

which has been included due to this perceived importance.

Furthermore, if the project managers are serious about the quality assurance process the test

manager did not see further difficulties in applying the guideline pointers in order to

facilitate the system and acceptance test.

7.2 Validity assessment
Since the thesis project has been a qualitative one, a search was made for validity criterion

suitable for these kinds of studies. As described by Trochim in [Trochim06], some

researcher’s claim that validity issues in qualitative studies differ from the ones discussed for

quantitative research. Trochim further describes that quantitative studies contain methods

and result data which cannot be found in qualitative studies [Trochim06]. Based on this

assumption, this section provides a validity discussion based on the four criterion introduced

by Lincoln and Guba in [Lincoln85] for qualitative research.

7.2.1 Credibility
This section will discuss how the participants in the case study experience the credibility of

the automated testing strategy and customer guidelines within their environment. This kind

of validity is important since the strategy and guidelines has only gone through a static

validation in terms of interviews and general discussions. The validation has been conducted

through discussions with a consultant test managers and an automated testing consultant at

Testway. In addition to this, an interview with one of their customers was conducted.

While the consultant test manager was interviewed for the validation of the part of the

strategy which included the customer guidelines, the automated test consultant was

interviewed to validate the credibility of the automation specific part of the strategy. The

purpose of the customer interview was to get their point of view of the customer guidelines.

Since system testability and stability was considered to be the main challenges in most

situations, the consultant test manager perceived the focus in the preparation phase as

credible. Furthermore, it was also mentioned that strong motivations of the guidelines used

in this phase was needed in order to convince the developers and managers in the customer

organization. As described, a customer interview was also conducted in order to get

customer validation of the guidelines. They consider testability and stability to be of great

importance for the system testing, acceptance testing and overall product quality.

Furthermore, they recognized the importance of having people in the organization which are

test-oriented since the testing practices may not be adopted otherwise. They also consider the

guideline approach to be appropriate for facilitating system testing in customer project but

also that it can be hard to convince low test maturity organizations to adopt the pointers. The

customer mentioned that there is a threshold that needs to be crossed before the practitioners

perceive the benefits. However, after this threshold has been crossed, they mentioned that an

organization rarely switches back to their old routines.

Unfortunately, the use of an automated testing strategy in the consulting domain was

perceived as difficult by the automated test consultant due to the changing parameters at

different customer sites. However, this has been taken this into consideration in the design of

the automation specific parts of the strategy and thereby they have been designed for

practitioners who move between different customer domains and development phases.

Therefore, it is suggested as future work to include a dynamic validation of the strategy so

that the feasibility of the strategy can be addressed from a live industrial perspective.

7.2.2 Transferability
This section will provide a discussion about how well the approach is transferable to other

settings than the one for which it was originally intended. As described throughout the thesis,

 76

the primary focus has been to produce an approach suitable for a consulting setting. In this

setting, the application domain is expected to change due to the consultant movement

between customers. To achieve this goal, the strategy and guideline pointers have been

generalized to the extent that they can be adopted independent of the current parameters in

the customer domain. Due to this design, the approach may be transferred to ordinary

development settings where the application domain is static. However, in this case it could

be appropriate to extend the guidelines with more specific pointers for the particular domain

since the strategy no longer needs the flexibility that the generalization provides. This kind

of extension is possible due to the dynamic structural design of the guidelines. In fact, since

the strategy and guideline pointers are expected to be modified, they have been designed to

support this which makes a setting transfer possible.

As mentioned in Section 7.2.1, the customer validation showed the importance of having at

least one person who is aware of the quality benefits that testing provides. Since the

preparation phase in the strategy involves a consultant test manager which motivates the

guideline pointers to the software practitioners and managers, a similar person is needed in

the traditional organization as well. Without such person, it would be hard to cross the

threshold described in Section 7.2.1 and this could infer a problem if the strategy and

guidelines is needed in an organization which currently have low test process maturity.

Furthermore, since the proposed strategy and guidelines refer to academic studies in the

pointer motivation sections it can be hard to transfer the approach to organizations which are

not susceptible to the results made by such studies.

7.2.3 Dependability
Trochim describes that quantitative studies use replicability in their validation process to

ensure that the results can be replicated by other researchers [Trochim06]. Trochim also

mentions dependability as an alternate way for qualitative researchers to describe how the

changing environment where the study was conducted has affected the research

[Trochim06]. Since replicability has been found to be inappropriate for this thesis project

due to the qualitative nature of the study, this section will instead describe how the

consulting setting where the study was conducted has influenced the research.

The main impact that the environment has made on the research is the abstraction levels of

the pointers in the strategy and customer guidelines. As described above, the pointers have

been designed to be general with the intent to be adoptable for several application domains.

If the approach would have been tailored for a particular environment, the pointers would

have included more domain specific details. However, since the pointer structure allows

dynamic modifications, these can be extended by organizations to include such details when

the need occur.

Also, as previously described, the preparation phase is dependent on a consultant test

manager who is responsible for motivating the guideline pointers. If a similar person who

can take this responsibility is not available in the organization that is about to adopt the

strategy, it could result in a low adoption level of the pointers.

7.2.4 Confirmability
Trochim mentions confirmability as a validity type which relates to how the study results can

be confirmed by others [Trochim06]. Since researchers often introduce validity threats in

form of personal bias, this section will describe how the view of the thesis author differs

from the point of view of other researchers.

As illustrated in Figure 3 (Section 3.1), the study started with a large literature survey which

formed the initial point of view of the author regarding the current state-of-the-art within the

field of testing and more specifically automated testing. Since the author has limited

experience in research evaluation, this can pose a threat to validity because it is possible that

 77

the evaluated studies have limited relevance for this particular thesis project. This threat was

handled through the academic validation described in section 3.5. As described, some

modifications were needed and have been implemented since the discussion with the

academic researcher. Furthermore, the concept of the strategy and guidelines was considered

feasible. However, further research validation was suggested for the metrics and

requirements pointers and these pointers need further confimability to ensure academic

relevance.

7.3 Answering research questions
This section will revisit the research questions that were initially formed in the early phases

of the thesis project. Section 7.3.1 provides a flowchart of how the questions were answered

and more elaborated answers is provided in Section 7.3.2.

7.3.1 Overview
Some of the research questions have been dependent on the results from the previous ones

and the workflow of these and their answers are illustrated in Figure 14.

Figure 14 – Research questions workflow

 78

7.3.2 Elaborated answers to research questions

RQ1) Which testing methods, approaches and strategies for automated testing are

considered state-of-the-art?

As described in Section 3.2, a literature survey was done in order to find research relevant

for the consulting domain. Through this survey, eight relevant state-of-the-art approaches

were found which was deemed relevant for use in this domain. The primary focus was to

find automated testing methods suitable for use in the system and acceptance testing levels.

However, since the consultants act in unit and integration testing levels in some situations it

was necessary to introduce methods which can be relevant for these situations as well. This

led to the summary of three black-box techniques, three black-box/white-box hybrid

techniques and two frameworks for unit testing suitable for both agile and plan-driven

development settings. More deep going summaries of these can be found in Section 2.5.

RQ2: What automated testing methods, approaches and strategies are currently used by

testing consulting firms?

Since the most common test levels are system and acceptance test, it is important that the

automated tools have sufficient support for testing system level requirements. For example,

tools such as Watir [Rogers07] are common for system testing of web applications. In

general, it is important that the tools are flexible enough to support custom modifications to

the test cases. Script languages such as Ruby have also been recognized as valuable due to its

capabilities to test modules written using other programming languages. Furthermore, it has

been recognized that partition testing is suitable in the cases when full test case automation is

not possible since this can be used to measure how much testing each system partition has

received.

RQ3: How do the testing and test processes for consulting firms differ from the

corresponding ones used by traditional software development organisations?

It has been identified that the main difference is that the test level responsibility differs

between test consultants and the developers in the traditional software development

organizations. It is generally considered that unit and integration testing shall be handled by

the developers doing the implementation while the test consultants are most often

responsible for the system and acceptance testing. Furthermore, it has been recognized that

the test process maturity is generally higher in the test consulting firm in comparison to the

customer organizations.

RQ4: What common factors of these can be identified for effective use across different

customer domains?

Low test process maturity in the customer organizations has caused low system stability due

to low usage of unit and integration testing. Furthermore, since the system and acceptance

tests use the system level requirements these are especially important. Unfortunately, it has

been recognised that the requirements process maturity is low as well which has lead to low

testability of the requirements. These problems combined have negatively affected the

system and acceptance testing done by the test consultants. In summary, the two identified

factors that most commonly needs improvement is the requirements engineering process and

general verification practices where the responsibility lies on the developers.

RQ5: Are there potential for reuse of automated test cases between different testing

consulting clients and domains?

 79

Since the customers pay for the automated test case creation, these test cases are not allowed

to leave their organisation. This means that there are no possibilities for this kind of reuse.

However, it has been recognized that the test methodology is constantly reused by each

individual consultant among different customers. The proposed strategy has taken this a step

further in order to allow knowledge reuse from an individual consultant to the rest of the

available consultants in the consulting firm. Such reuse benefits the consulting firm since the

knowledge set and experiences of each individual can be transferred which in turn increases

the total knowledge in the organization.

RQ6: What problems exists in regards to testability in customer projects?

Low testability and stability is a common problem which can be traced to low test process

maturity in some organizations. The requirements are often poorly formulated in the

situations where they exist and in many cases, there are no documented requirements at all.

Furthermore, it has been recognized that the low process maturity has inferred low adoption

of testing practices in the early phases of development. Also, low test process maturity has

affected the software design in the sense that testability has not been build into the system

which restricts automated tools that rely on software hooks which was earlier described.

These factors combined have impacted the efficiency of the system and acceptance testing in

a negative way.

RQ7: How can the automated testing methods, approaches and strategies be transformed

and combined in order to be more flexible in the dynamic environments of consulting firms?

These can be made more flexible through the use of an automated testing strategy which can

be applied in several application domains. Since there are often problems with low testability

and stability due to low test process maturity in the customer projects, these problems must

be handled prior to the consultant assignments. This in turn can be solved by introducing

customer guidelines which targets the most common test process problems in the

organizations. A dynamic structure is needed for the automated testing strategy and customer

guidelines for them to stay efficient. The suggested pointers in both the strategy and the

guidelines need to evolve when the test process maturity increases in the customer

organizations. This can be handled by modifying, removing or adding pointers to the current

set due to the dynamic structure. Furthermore, it is important that the pointers of the strategy

and customer guidelines are supported by either previous consultant experiences or

empirically evaluated studies which prove their worth. Otherwise it can be hard to convince

practitioners of their value in their domain.

 80

8 CONCLUSIONS

The consulting automated testing strategy (CATS) along with its supporting customer

guidelines was developed for consulting domains where the practitioners act in changing

application environments. CATS is divided into three steps where the first step targets the

system testability and stability, a step which should be done prior to the actual test

automation. The second step handles issues that should be taken care of in the test execution

phase. As for the final step of CATS, it is focused on strategy and customer guideline

improvements. Both CATS and the guidelines was developed in cooperation with a test

consulting firm where it was recognized that the most common challenges is related to

requirements engineering practices and early verification activities in the customer projects.

These problems have caused low testability and stability in the customer projects which has

inferred problems in the system testing level where the consultants mostly act. Furthermore,

low testability and stability often increase the lead time for the testers since the system test

often finds defects that should have been found by proper unit and integration testing which

is the responsibility of the developers in the projects.

CATS use the customer guidelines in order to increase the test process maturity in the

customer organizations which can solve the current lack of high testability and stability in

the development projects. Both the strategy and the customer guidelines have been validated

through industrial discussions in a consulting firm and by discussions with researchers in

academia. An automated test consultant perceived that an automated testing strategy would

to be difficult to apply in the consulting domain due to the changing parameters at different

customer sites. To handle this issue, CATS has been generally designed to be flexible with

the intent to be useful in different customer settings. The customer guidelines on the other

hand were perceived by a consultant test manager as useful in the customer organizations

due to the increase in software quality that they are expected to bring. However, it is also

believed that there may be some problems to convince the management and developers of

the benefits gained by adopting the guideline pointers. Relevant academic references and

previous consultant experiences was provided in the motivation section in order to solve this

issue and it was concluded by both the case study and the academic validation that this kind

of motivations is feasible.

Since CATS is developed for consulting practitioners which act in several development

domains, this strategy can be generalized to more static development settings as well. The

strategy and guidelines can be dynamically modified to suit specific organizations. This way,

they can be used at different test process maturity levels. With these strengths, the approach

can evolve alongside the increasing test process maturity in the organizations which adopts

it.

 81

9 FUTURE WORK
Only static validation has been performed through interviews within the consulting firm, a

relevant customer of this firm and researchers in academia. It would be appropriate for future

researchers to assess the strategy and guidelines through dynamic validation by letting

consulting customers use the guidelines before the consultant starts the assignment using the

automated strategy. This way, an eventual increase in quality could be monitored and

documented which would prove the worth of this study as well.

In the middle of the thesis project, it was discussed whether or not to build a tool for the

customer guidelines which could generate specific sets of guidelines dynamically by

assessing certain customer parameters. This idea was formed through discussions with the

thesis supervisor. Such tool is suggested as future work since it could be beneficial for

consulting firms that have adopted the automated testing strategy and the customer

guidelines. Furthermore, since knowledge reuse is a part of the automated testing strategy, it

could also be worth to include further research on knowledge management issues as a

complement to that strategy step.

In regards to the guidelines, these could be extended with additional pointers in the

requirements engineering field. As previously described, the requirements and metric

pointers in the strategy and guidelines would benefit from further academic validation for

their motivation sections. Furthermore, to enable the creation of the tool mentioned above, it

would be appropriate to modify the guidelines to that customer parameters can be mapped

against certain pointers.

There was a suggestion from one of the consultant test managers that it could help the

customer guideline adoption if the pointers could be mapped to specific development phases

in the methodologies used in the customer organizations. A study where different

methodologies are organized and put in relation to the customer guidelines could increase the

efficiency of the strategy and customer guidelines.

It may be possible to adapt current strategy to in-house project commitments as well but such

case study was out of scope of this thesis. It would increase the validity of the current study

if the strategy along with the guidelines would be empirically evaluated in a consulting in-

house commitment project.

 82

10 REFERENCES

[Abrahamsson03] Abrahamsson, P. (1-6 Sept. 2003). Extreme programming: first results

from a controlled case study. Proceedings on 29th Euromicro Conference, 259- 266.

[Aurum02] Aurum, A., Petersson, H., & Wohlin, C. (September 2002). State-of-the-Art:

Software Inspections after 25 Years. Software Testing Verification and Reliability, 3(12),

133-154.

[BDD07] BehaviourDrivenDevelopment. (n.d.). Retrieved May 22, 2007, from

http://behaviour-driven.org/.

[Bach01] Bach, J. (2001). James Bach on Explaining Testing to Them. Software Testing &

QUality Engineering, 6(3).

[Baudry03] Baudry, B., Traon, Y. L., Sunyé G., & Jézéquel, J.-M. (2003). Measuring and

improving design patterns testability. 9th IEEE International Software Metrics Symposium

(METRICS’03), 50–59.

[Beck98] Beck, K., & Gamma, E. (1998). Test infected: programmers love writing tests.

Java Report, 3(7), 37–50.

[Beck99] Beck, K. (1999). Embracing change with extreme programming, Computer,

10(32), 70-77.

[Berander05] Berander, P., & Andrews, A. (2005). Requirements Prioritization. In

Engineering and Managing Software Requirements, eds. A. Aurum, C. Wohlin, 69-94.

[Bhat06] Bhat, T., & Nagappan, N. (2006). Evaluating the efficacy of test-driven

development: industrial case studies. Proceedings of the 2006 ACM/IEEE international

symposium on International symposium on empirical software engineering, 356 – 363.

[Boehm01] Boehm, B., & Basili, V. (January 2001). Software Defect Reduction Top 10 List,

IEEE Computer, 1(34), 2-6.

[Borland07] Borland. (2007). Automated Software Regression Testing & Functional

Software Testing - from Borland. Retrieved May 22, 2007, from

http://www.borland.com/us/products/silk/silktest/index.html.

[Boyapati02] Boyapati, R., Khurshid, S., & Marinov, D. (July 2002). Korat: Automated

Testing Based on Java Predicates. ACM International Symposium on Software Testing and

Analysis (ISSTA), 123-133.

[Brown03] Brown, M. A., & Tapolcsanyi, E. (2003). Mock Object Patterns. 10th Conference

on Pattern Languages of Programs.

[Bugzilla07] The Mozilla Organization. (1998-2007). Bugzilla. Retrieved May 22, 2007,

from http://www.bugzilla.org/.

[Büchi99] Büchi, M., & Weck, W. (1999). The greybox approach: when blackbox

specifications hide too much (Technical Report 297). Turku Centre for Computer Science.

 83

[CMMI02] CMMI Product Team. (2006). CMMI for Development (version 1.2) (Technical

Report CMU/SEI-2006-TR-008). USA, Pittsburgh: Carnegie Mellon University, Software

Engineering Institute.

[Cole00] Cole, O. (2000). White-Box Testing. Dr. Dobb's Journal: Software Tools for the

Professional Programmer, 3(25), 23-28.

[Damian03] Damian, D., Chisan, J., Vaidyanathsamy, L., & Pal, Y. (2003). An industrial

case study of the impact of requirements engineering on downstream development. In

Proceedings of the International Symposium on Empirical Software Engineering (ISESE),

40-49.

[Dijkstra72] Dijkstra, E. W. (1972). Notes on structured programming. In Structured

Programming, eds. Dahl, O.J., Dijkstra, E.W., & Hoare, C.A.R. London: Academic Press.

[Edwards01] Edwards, S. H. (2001). A Framework for Practical, Automated Black-Box

Testing of Component-Based Software. Software Testing, Verification and Reliability, 11(2).

[Ekelund02] Ekelund, H. (December, 2002). TSQLUnit unit testing framework. Retrieved

May 22, 2007, from http://sourceforge.net/projects/tsqlunit.

[Elbaum00] Elbaum, S., Malishevsky, A. G., & Rothermel, G. (August 21-24, 2000).

Prioritizing test cases for regression testing. Proceedings of the 2000 ACM SIGSOFT

international symposium on Software testing and analysis, 102-112.

[Elbaum01] Elbaum, S., Malishevsky, A., & Rothermel, G. (May 12-19, 2001).

Incorporating Varying Test Costs and Fault Severities into Test Case Prioritization.

Proceedings of the 23rd International Conference on Software Engineering, 329-338.

[Erdogmus05] Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On the Effectiveness of

the Test-First Approach to Programming. IEEE Transactions on Software Engineering,

3(31), 226-237.

[Gable03] Gable, G. (2003). Consultants and Knowledge Management. JOURNAL OF

GLOBAL INFORMATION MANAGEMENT, 3(11).

[Galli03] Galli, M., Nierstrasz, O., & Wuyts, R. (2003). Partial ordering tests by coverage

sets (Technical Report IAM-03-013). Switzerland, Bern: Universitat Bern, Institut für

Informatik.

[Gao02] Gao, J. Z., Gupta, K. K., Gupta, S., & Shim, S. S. Y. (February 04-06, 2002). On

Building Testable Software Components. Proceedings of the First International Conference

on COTS-Based Software Systems, 108-121.

[Gelperin88] Gelperin, D., & Hetzel, B. (June 1988). The growth of software testing.

Communications of the ACM, 6(31), 687 – 695.

[George04] George, B., & Williams, L. (2004). A structured experiment of test-driven

development. Information and Software Technology 46, 337-342.

[Glass98] Glass, R. L. (December, 1998). How Not to Prepare for A Consulting Assignment

and Other Ugly Consultancy Truths. Communications of the ACM, 12(41), 11-13.

 84

[Godefroid05] Godefroid, P., Klarlund, N., & Sen, K. (2005). DART: Directed Automated

Random Testing. Proceedings of the 2005 ACM SIGPLAN conference on Programming

language design and implementation, 213-223.

[Gorschek06] Gorschek, T., & Wohlin, C. (2006). Requirements Abstraction Model.

Requirements Engineering, 1(11), 79-101.

[Graham02] Graham, D. (2002). Requirements and Testing: Seven Missing-Link Myths.

IEEE Software, 5(19), 15-18.

[Graham93] Graham, D.R. (8 Dec 1993). Testing, verification and validation. Layman's

Guide to Software Quality, IEE Colloquium on.

[Hayes95] Hayes, L. (1995). The Automated Testing Handbook. The Software Testing

Institute, Texas.

[Hellesøy05] Hellesøy, A., Baker, S., Chelimsky, D., Takita, B., Astels, D., & Redpath, L.

(2005). Retrieved May 22, 2007, from http://rubyforge.org/projects/rspec.

[JBehave07] JBehave. (2007). Retrieved May 22, 2007, from http://jbehave.org/.

[Jeffries07] Jeffries, R. E. (1999-2007). Retrieved May 22, 2007, from

http://www.xprogramming.com/.

[Johansen01] Johansen, K., Stauffer, R., & Turner, D. (2001). Learning by Doing: Why XP

Doesn’t Sell. Proceedings of the XP/Agile Universe.

[Juristo04] Juristo, N., Moreno, A. M., & Vegas, S. (March, 2004). Reviewing 25 Years of

Testing Technique Experiments. Empirical Software Engineering, 1-2(9), 7-44.

[Kaner97] Kaner, C. (1997). Improving the Maintainability of Automated Test Suites.

Proceedings of the 10th International Software/Internet Quality Week, 4(4).

[Kaner97b] Kaner, C. (April 1997). Pitfalls and strategies in automated testing. Computer,

4(30), 114-116.

[Kantamneni98] Kantamneni, H. V., Pillai, S.R., & Malaiya, Y.K. (1998). Structurally

Guided Black Box Testing (Technical report). USA, Ft. Collings: Colorado State University,

Dept. of Computer science.

[Keller05] Keller, R.K., Weber, R., & Berner, S. (May, 2005). Observations and lessons

learned from automated testing. On Proceedings of the 27th International Conference on

Software Engineering, 571-579.

[Koonen99] Koonen, T., & Pol, M. (1999). Test Process Improvement: A Practical Step-by-

Step Guide to Structured Testing. Boston: Addison-Wesley Longman Publishing Co.

[Koskela04] Koskela, J., & Abrahamsson, P. (2004). On-Site Customer in an XP Project:

Empirical Results from a Case Study. In Proceedings 11th European Conference on

Software Process Improvements (EuroSPI 2004), 1-11.

[Larman05] Larman, C. (2005). Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design (3rd edition). USA, New Jersey: Prentice Hall.

 85

[Leung97] Leung, H. K. N., & WONG, P. W. L. (1997). A study of user acceptance tests.

Software Quality Journal, 2(6), 137-149.

[Lincoln85] Lincoln, Y. S., & Guba, E. A. (1985). Naturalistic inquiry. USA, Beverly Hills:

Sage.

[Lipaev03] Lipaev, V. V. (November, 2003). A Methodology of Verification and Testing of

Large Software Systems. Journal Programming and Computer Software, 6(29), 298-309.

[Lloyd02] Lloyd, W.J., Rosson, M.B., & Arthur, J.D. (2002). Effectiveness of elicitation

techniques in distributed requirements engineering. In 10th Anniversary IEEE Joint

International Conference on Requirements Engineering, 311-318.

[Lormans06] Lormans, M., Gross, H.-G., Deursen, A. van., Solingen, R. van., & Stehouwer,

A. (October 2006). Monitoring Requirements Coverage using Reconstructed Views: An

Industrial Case Study. In Proceedings of the 13th Working Conference on Reverse

Engineering (WCRE’2006), 275–284.

[Merisalo-Rantanen05] Merisalo-Rantanen, H., Tuunanen, T., & Rossi, M. (2005). Is

Extreme Programming Just Old Wine in New Bottles: A Comparison of Two Cases. Journal

of Database Management, 5(16), 41-61.

[Meszaros03] Meszaros, G., Smith, S. M., & Andrea, J. (2003). The Test Automation

Manifesto. XP Agile Universe Conference, 73-81.

[Microsoft07] Microsoft Corporation. (2007). Microsoft Windows 2000 Scripting Guide -

COM Objects. Retrieved May 22, 2007, from

http://www.microsoft.com/technet/scriptcenter/guide/sas_vbs_wcmr.mspx?mfr=true.

[Miller01] Miller, R. W., & Collins, C. T. (July, 2001). Acceptance Testing, Procs.

XPUniverse.

[Mouchawrab05] Mouchawrab, S., Briand, L. C., & Labiche, Y. (2005). A measurement

framework for object-oriented software testability. Information and Software Technology,

15(47), 979-997.

[Murnane05] Murnane, T., Hall, R., & Reed, K. (2005). Towards Describing Black-Box

Testing Methods as Atomic Rules. 29th Annual International Computer Software and

Applications Conference (COMPSAC ’05), 1, 437-442.

[Murnane06] Murnane, T., Reed, K., & Hall, R. (2006). Tailoring of Black-Box Testing

Methods. Australian Software Engineering Conference, 292-299.

[Myers04] Myers, G. J., Badgett, T., & Sandler, C. (2004). The ART of SOFTWARE

TESTING (2nd ed.). USA, New Jersey: John Wiley & Sons, Inc.

[Nebut03] Nebut, C., Fleurey, F., Le Traon, Y., & Jézéquel, J.-M. (November 17-21, 2003).

Requirements by Contracts Allow Automated System Testing. Proceedings of the 14th

International Symposium on Software Reliability Engineering, 85-96.

[Noonan02] Noonan, R. E., & Prosl, R. H. (February 27 - March 03, 2002). Unit testing

frameworks. Proceedings of the 33rd SIGCSE technical symposium on Computer science

education, 232 - 236.

 86

[ObjectMentor01] ObjectMentor, Incorperated. (2001-04). JUnit, Testing Resources for

Extreme Programming. Retrieved May 22, 2007, from http://www.junit.org/.

[Pacheco07] Pacheco, C., Lahiri, S. K., Ernst, M. D., & Ball, T. (May 23-25, 2007).

Feedback-directed random test generation. In Proceedings of the 29th International

Conference on Software Engineering (ICSE'07).

[Pancur03] Pancur, M., Ciglaric, M., Trampus, M., & Vidmar, T. (2003). Towards empirical

evaluation of test-driven development in a university environment. EUROCON 2003, 2, 83-

86.

[Pargas99] Pargas, R.P., Harrold, M. J., & Peck, R. R. (1999). Test-Data Generation Using

Genetic Algorithms. The J. Software Testing, Verification and Reliability, 9, 263-282.

[Pettichord02] Pettichord, B. (October 2002). Design for Testability. In Pacific Northwest

Software Quality Conference.

[Pitts07] Pitts, M. G., & Browne, G. J. (2007). Improving requirements elicitation: an

empirical investigation of procedural prompts. Information Systems Journal, 1(17), 89-110.

[Poston92] Poston, R.M., & Sexton, M.P. (1992). Evaluating and Selecting Testing Tools.

IEEE Software, 3(9), 33-42.

[Pyhajarvi04] Pyhajarvi, M., & Rautiainen, K. (2004). Integrating Testing and

Implementation into Development. Engineering Management Journal, 1(16), 33-39.

[Rakitin01] Rakitin, S. R. (2001). Software Verification and Validation for Practitioners and

Managers. Artech house Inc.

[Rogers07] Rogers, P., & Pettichord, B. (n.d.). Watir: Web Application Testing In Ruby.

Retrieved May 22, 2007, from http://wtr.rubyforge.org/.

[Rosenberg98] Rosenberg, L., Hammer, T., & Huffman, L. (1998). Requirements, testing

and metrics. In Proceedings of the 15th Annual Pacific Northwest Software Quality

Conference.

[Runeson06] Runeson, P. (2006). A Survey of Unit Testing Practices. IEEE Software, 4(23),

22-30.

[Saff04a] Saff, D., & Ernst, M. D. (July 12-14, 2004). An experimental evaluation of

continuous testing during development. Proceedings of the 2004 International Symposium

on Software Testing and Analysis, 76-85.

[Saff04b] Saff, D., & Ernst, M. D. (June 7-8, 2004). Mock object creation for test factoring.

In ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering (PASTE'04), 49-51.

[Sauer03] Sauer, T. (2003). Using design rationales as agile documentation. In Proceedings

of the 18th International Workshops on Enabling Technologies: Infrastructures for

collaborative enterprises, 326–331.

[Schwaber01] Schwaber, K., & Beedle, M. (2001). Agile Software Development with

Scrum. USA, New Jersey: Prentice Hall.

 87

[Sneed04] Sneed, H.M. (24-26 June 2004). Program comprehension for the purpose of

testing. In Proceedings of the 12th IEEE International Workshop on Program

Comprehension, 162-171.

[Sogeti04] Sogetti. (2004). TPI Automotive (version 1.01). Retrieved May 22, 2007, from

http://www.flow.nl/images/TPI_automotive_version_1%5B1%5D.01_tcm6-30253.pdf.

[Sommerville04] Sommerville, I. (2004). Software Engineering (7th ed.). Boston: Addison-

Wesley.

[Srivastava02] Srivastava, A., & Thiagarajan, J. (2002). Effectively prioritizing tests in

development environment. ACM SIGSOFT Software Engineering, 4(27), 97 – 106.

[Talby05] Talby, D., Nakar, O., Shmueli, N., Margolin, E., & Keren, A. (2005). A process-

complete automatic acceptance testing framework. Proceedings. IEEE International

Conference on, 129-138.

[Testway06] Testway. (2006). Testway - Certified Test Specialists. Retrieved May 22, 2007,

from http://www.testway.se/services_e.html.

[Tillmann05] Tillmann, N., & Schulte, W. (2005). Parameterized unit tests. ACM SIGSOFT

Software Engineering, 5(30), 253 – 262.

[Tillmann06] Tillmann, N., & Schulte, W. (2006). Mock-object generation with behavior.

21st IEEE/ACM International Conference on Automated Software Engineering (ASE'06),

365-368.

[Trochim06] Trochim, W. M. (October 20, 2006). The Research Methods Knowledge Base

(2nd Edition). Retrieved May 22, 2007, from http://www.socialresearchmethods.net/kb/.

[Turk06] Turk, W. (2006). Writing requirements for engineers [good requirement writing].

Engineering Management Journal, 3(16), 20-23.

[Wells99] Wells, D. (1999, 2000, 2001). Retrieved May 22, 2007, from

http://www.extremeprogramming.org/.

[Whittaker00] Whittaker, J.A. (2000). What is software testing? And why is it so hard?.

IEEE Software, 1(17), 70-79.

[Williams03] Williams, L., Maximilien, E. M., & Vouk, M. (2003). Test-driven development

as a defect-reduction practice. IEEE International Symposium on Software Reliability

Engineering, 34-45.

[Xie06] Xie, T. (2006). Improving Effectiveness of Automated Software Testing in the

Absence of Specifications. 22nd IEEE International Conference on Software Maintenance,

355-359.

[Yadla05] Yadla, S., Hayes, J. H., & Dekhtyar, A. (September 2005). Tracing Requirements

to Defect Reports: An Application of Information Retrieval Techniques. Innovations in

Systems and Software Engineering: A NASA Journal, 2(1), 116-124.

[Yang06] Yang, Q., Li, J. J., & Weiss, D. (2006). A survey of coverage based testing tools.

International Conference on Software Engineering, Proceedings of the 2006 international

workshop on Automation of software test, 99 – 103.

 88

[Yong05] Yong, L., & Andrews, J.H. (November 08-11, 2005). Minimization of

Randomized Unit Test Cases. Proceedings of the 16th IEEE International Symposium on

Software Reliability Engineering, 267-276.

[Zhu97] Zhu, H., Hall, P. A. V., & May, J. H. R. (December, 1997). Software unit test

coverage and adequacy. ACM Computing Surveys, 29(4), 365 – 427.

 89

11 APPENDIX A – CUSTOMER GUIDELINE

CHECKLIST
Requirements engineering pointers – Elicitation Methodology Check

Ask reasoning questions. Independent

Prioritize requirements. Independent

Avoid asynchronous questioners. Independent

Requirements engineering pointers – Analyses Methodologies Check

Avoid dividable requirements. Independent

Ensure measurability. Independent

Ensure requirements testability. Independent

Avoid contradictions. Independent

Analyze assumptions. Independent

Requirements engineering pointers – Specification Methodology Check

Consider requirements traceability. Independent

Ensure understandability. Independent

Store rationales. (Event-Based Design Rationale Model) Agile

Allocate time for workshops. Agile

Complement user stories or backlogs with test stories. Agile

Avoid ambiguity. Plan-driven

Store rationales. (Detailed descriptions) Plan-driven

Ensure requirements comparability. Plan-driven

Structure requirements in logical order. Plan-driven

General verification pointers Methodology Check

Maintain the requirements. Independent

Use change management routines. (Store the rational for accepted

changes)
Independent

Involve testers early and continuously. Independent

Design for testability. Independent

Enforce test-first practice. Agile

Create simple unit tests and follow the automation test manifesto. Agile

Use code coverage through personal code ownership. Agile

Allocate sufficient time for testing. Plan-driven

Use continuous integration practice. Plan-driven

