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ABSTRACT 
 

 

 

Software for space applications has special 

requirements in terms of reliability and dependability. 

As the verification & validation activities (VAs) of 

these software systems account for more than 50% of 

the development effort and the industry is faced with 

political and market pressure to deliver software faster 

and cheaper, new ways need to be established to reduce 

this verification & validation effort.  

In a research project together with RUAG 

Aerospace Sweden AB and the Swedish Space 

Corporation, the Blekinge Tekniska Högskola is trying 

to find out how to optimize the VAs with respect to 

effectiveness and efficiency.  

The goal of this thesis is therefore to develop a 

coherent framework for the management and 

optimization of verification & validation activities 

(VAMOS) and is evaluated at the RUAG Aerospace 

Sweden AB in Göteborg.  

 

Keywords: verification & validation, space industry, 

process improvement 
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1 INTRODUCTION 
 

1.1 Software In Space 
 

Software for space applications has special requirements in terms of reliability and 

dependability. Since existing software engineering standards do not to cope with these 

challenges [FEL09], the European Cooperation for Space Standardization (ECSS) has 

developed a set of standards to address these issues. 

 

As any other software-related industry, the space industry is faced with political and market 

pressure to deliver software at lower cost and faster time-to-market while keeping up high 

the quality requirements [FEL09].  

 

In a research project together with RUAG Aerospace Sweden AB and the Swedish Space 

Corporation, the Blekinge Tekniska Högskola (BTH) is trying to optimize verification & 

validation activities (VAs) with respect to effectiveness and efficiency. The companies feel 

that they find the same defects with multiple VAs and therefore see a chance to reduce this 

redundancy without negatively impacting quality [AHM09] [RAZ09]. 

 

1.2 RUAG Aerospace Sweden AB 
 

This thesis project was done at the RUAG Aerospace Sweden AB which was a subsidiary of 

Saab until it was acquired by the Swiss- & Germany-based company RUAG [RUA09]. 

RUAG specializes in highly reliable on-board satellite equipment such as computer systems, 

antennas, microwave electronics etc. Thereby, RUAG develops both the hardware and the 

software. The company is headquartered in Göteborg, Sweden and employs in total 360 

people, of which about 30 work in the software unit. 
 
Typically up to five projects are developed simultaneously in varying team sizes of about 10 

people. The software projects range from 10 KLOC to 100 KLOC depending on the project 

and are developed mainly in C but with some low level parts written in assembler. 

 

1.3 Swedish Space Corporation 
 

The Swedish Space Corporation is a wholly state-owned company and has specialized itself 

on the development and operation of satellite systems, as well as rocket & balloon systems, 

launch services, flight test services and maritime surveillance. 

  

SSC has about 600 employees in five locations throughout Sweden. The head office and 

engineering center is located in Solna near Stockholm and employs there ca 130 people.  

 

The analysis took place in the satellite systems division, which develops attitude orbit & 

control systems, advanced On-board Data handling system units, on-board basic and 

application software, propulsion systems, and ground systems for testing and mission 

control. Thus, the division is operating in the same domain as RUAG. 
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1.4 Problem description 
 

In the first part of the collaboration with RUAG and SSC, BTH has focused on analyzing the 

current situation of both companies. They examined the companies‟ way of work and the 

challenges they face regarding verification and validation [RAZ09] [FEL09]. A master thesis 

[AHM09], conducted within this project, found three main problems: faults „slip‟ through 

between development phases, inappropriate selection of VAs, and the process and 

documentation requirements imposed by the ECSS standards.  

 

The goals and expectations of RUAG were furthermore explored in an open interview with 

two representatives from the company, the head of software development and one project 

manager. The central questions of this interview were: 

 

1. What are the biggest problems in each development phase after detailed design? 

2. What are your expectations from introducing the framework? 

3. Is the goal to reduce the number of VAs or the effort within each activity? 

4. Would/could you change a VA? 

 

The summarized results are as follows: 

 

Since RUAG spends much effort on verifying and validating the software to comply with the 

ECSS standard and the high reliability demands in the Space industry and at the same time 

the market pressure grows to produce software cheaper and faster, RUAG strives to reduce 

the effort spent on its VAs while keeping up the high quality. Therefore, RUAG seeks to 

gain a deeper understanding of its VAs and conduct and manage them in a more systematic 

approach:  

 

1. RUAG believes that faults slip through (FST) to later VAs when they should have 

been found earlier. The concept of FST, introduced by Damm et al. [DAM06], 

should therefore be adapted to the RUAG software development processes to gain 

more insight into the VAs carried out by the company. 

2. Related to this problem is, that there is a lack of understanding which kinds of faults 

exist, where they are found and where they should have been found. Hence, RUAG‟s 

aim is to answer the question, whether they should focus on finding a certain kind of 

fault in each VA.  

3. RUAG‟s experience is that code inspection is the most effective VA. Since problems 

in the HW/SW interface also cause severe problems, more tests, e.g. exploratory 

testing, in this field would be beneficial. However, RUAG has no means to show to 

their customers and/or ESA that certain VAs are more effective and focusing on 

these VAs would increase the quality.  

 

Therefore, RUAG‟s expectations from introducing the framework are the development of a 

fault classification specific to RUAG and a process of collecting data, hence a way to make it 

easier to measure the correct data. 

 

Another question RUAG would like to answer with the framework is which VA they should 

conduct when delivering a draft software, to show the customer a high-quality prototype of 

the software very early in the process.  

 

Since RUAG is bound to the ECSS, it is neither possible for them to reduce the number of 

VAs nor to exchange one VA by another, which was considered one possibility to improve 

the VAs before conducting this interview. This means, that the framework should focus more 

on improving existing VAs than selecting VAs from a (hypothetical) set of VAs.  

 



  4 

Thus, RUAG faces the problem of a fault slippage between the different development and 

testing phases and a lack of insight into the VAs. It is unclear which types of defects are 

found in each VA, what types the VAs should find and if there is an overlap between the 

VAs, i.e. whether different VAs find the same kind of defects. Hence, a further insight into 

the effectiveness and efficiency of the VAs is required to make a case on which VAs to focus 

and to find out which VAs need to be improved. Furthermore it is unclear which 

measurements need to be performed to quantify the problems and how the VAs can be 

improved using the collected data.  

 

1.5 Background 
 

Instead of focusing on a single verification and validation activity, research [LIT00][KIT98]  

and industry [KIK01] show that combining different VAs can be more efficient in finding 

defects. To keep up with the constant market pressure that is omnipresent in industry, further 

investigation is necessary to guide industry on how to select VAs to maximize the defect 

detection efficiency while minimizing the effort spent. Some initial work that has been done 

towards the creation of a comparison framework is presented in the following. 

  

Wojcicki and Strooper present in [WOJ07] an iterative selection strategy (ISS) for 

verification & validation activities. The VAs are thereby firstly selected by their efficiency in 

order to maximize completeness, and secondly by the effort, i.e. the cost, they require. Based 

on the data collected while applying the technique, the selection is refined iteratively.  

In [DAM06] the concept of Fault-Slip-Through (FST) is presented. In this approach, the 

faults found are categorized according to which phase they belong to, i.e. in which VA they 

should have been found. Based on these findings and the effort of the VA, the improvement 

potential for each activity is calculated. 

Wagner [WAG06] proposes a more analytical approach. The defect detection techniques are 

thereby compared using an economical metric, namely the return on investment (ROI). The 

model also considers the effect of combining different defect detection techniques. 

 

A framework for the comparison of testing activities and formal verification is presented in 

[BRA06]. However, this approach focuses more on studying the synergy and relationship of 

these two activities and doesn‟t give any advice on how this combination can be optimized.  

 

Apart from the work that focuses on optimizing VAs in particular, frameworks have been 

proposed like QIP [BAS94], Six Sigma [TAY02] or the SEI measurement process [MCA93] 

which target process improvement in general. They typically follow an iterative process 

based on a problem description or analysis, a measurement phase, a root-cause analysis 

followed by an implementation phase.  

 

There exists also a standard, namely IEEE 1061 [IEE1061], related to software metrics and 

measurement. It defines a methodology for establishing quality requirements and finding, 

measuring and validating appropriate software product and process metrics.  

 

1.6 Contribution 
 

This thesis contributes with a framework for the efficient management and optimization of 

verification & validation activities in real-world software development. It addresses the 

problems stated in section 1.4, i.e. to solve the problem of fault-slip-through and gain a more 

thorough understanding of the VAs with respect to their efficiency and effectiveness. To the 

best of our knowledge, currently no such framework exists that solves these problems. 
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1.6.1 Aims & objectives  
 

Existing process improvement frameworks like QIP and Six Sigma but also the ISS rely on 

an iterative methodology to gradually evolve the processes. This methodology is based on 

the principle that software process improvement is a step-by-step process in an iterative 

lifecycle [FOW90] and that software engineers need post-mortem analysis in order to 

improve the construction processes of future projects [BAS88]. Therefore, the framework 

should also be based on an iterative cycle, in particular the cycle of ISS.  

 

As DeMarco points out in [DMA86] you cannot control what you cannot measure. 

Therefore it is necessary to find out which measurements need to be done in order to support 

such a framework.  

 

Because the framework is going to be used in an industry setting, it has to be as lightweight 

as possible and should only require a minimal set of changes to the existing processes. 

Therefore, the framework should allow for a parameterization to incorporate existing 

measurements of a company and to variably adjust the effort that has to be spent on the 

framework.  

 

Hence, this thesis tries to answer the questions which measurements need to be done and 

how they can be combined into a coherent iterative framework that allows for the 

management and optimization of VAs. The detailed aims & objectives of the thesis are 

therefore as follows: 

 

 Adapt FST and ISS to the development processes at RUAG Aerospace Sweden  AB 

 Creation of a framework that enables the comparison of the effectiveness of different 

VAs in eliminating different types of software defects and the comparison of the 

efficiency of different VAs. 

 Validation of the framework at RUAG Aerospace Sweden  AB 

 Description of a minimal set of changes that RUAG needs to make to adapt to the 

framework 

 A consideration of how the framework could be applied to the more agile 

development processes used at Swedish Space Corporation (SSC). 

  

1.6.2 Research questions 
 

To achieve the aforementioned aims & objectives, the following research questions need to 

be answered: 

 

1. How can Fault-Slip-Through (FST) and Iterative Selection Strategy (ISS) be 

combined into a coherent framework? 

2. Which alternatives exist to the aforementioned models? 

3. Which measurements need to be done to support this framework? 

4. How can the framework support parameterization to include existing measures and 

thus, minimize the measuring effort to be real-world applicable? 

5. How can the framework be adapted to a real-world industry setting by only doing 

minimal changes to the company‟s processes? 

6. How does the framework perform in a real-world industry setting? 

7. How can the framework be adapted to a more agile process?  

 

Table 1 shows the mapping of these research questions to the aims of this thesis.  
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Aim Research Question(s) 

Adapt FST and ISS to the 

development processes at 

RUAG Aerospace Sweden  AB 

RQ1. How can Fault-Slip-Through (FST) and Iterative 

Selection Strategy (ISS) be combined into a coherent 

framework? 

RQ4. How can the framework support parameterization 

to include existing measures and thus, minimize the 

measuring effort to be real-world applicable? 

RQ5. How can the framework be adapted to a real-world 

industry setting by only doing minimal changes to the 

company‟s processes? 

 

Creation of a framework that 

enables the comparison of the 

effectiveness of different VAs 

in eliminating different types of 

software defects and the 

comparison of the efficiency of 

different VAs. 

RQ2. Which alternatives exist to the aforementioned 

models? 

RQ3. Which measurements need to be done to support 

this framework? 

RQ4. How can the framework support parameterization 

to include existing measures and thus, minimize the 

measuring effort to be real-world applicable? 

 

Validation of the framework at 

RUAG Aerospace Sweden  AB 

RQ6. How does the framework perform in a real-world 

industry setting? 

Description of a minimal set of 

changes that RUAG needs to 

make to adapt to the framework 

RQ4. How can the framework support parameterization 

to include existing measures and thus, minimize the 

measuring effort to be real-world applicable? 

RQ5. How can the framework be adapted to a real-world 

industry setting by only doing minimal changes to the 

company‟s processes? 

 

A consideration of how the 

framework could be applied to 

the more agile development 

processes used at Swedish 

Space Corporation (SSC). 

RQ7. How can the framework be adapted to a more agile 

process?  

 

Table 1: Mapping of research questions to the aims 

1.6.3 Expected outcomes 
 

 A description of the framework 

 A process guideline for RUAG describing how the framework can be applied to their 

processes. 

 Validation results gained by interviews and, if possible, by the data measured in a 

real project 

 A list of recommendations for improving the RUAG development process based on 

the application of  the framework 

 A description on the suitability of applying the framework in a more agile 

environment  

 

1.7 Research methodology 
 

First, the process documents of RUAG will be analyzed to gain an in-depth knowledge of 

their software development processes. This includes roles, development phases, VAs used in 

each phase and metrics collected. Furthermore, the existing data and metrics collected for the 
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different VAs will be investigated and evaluated with respect to their suitability for usage in 

the framework.  

 

A literature survey is carried out to reveal the current state-of-the-art including which 

alternative models exist for the selection of the VAs and the measurement of these. 

Additionally, the results of the master thesis [AHM09] serve as input for providing 

preliminary data of the efficiency and effectiveness of the VAs in RUAG. 

 

Based on these inputs (the previous and related work, the RUAG processes and existing 

measurement data) as well as the expectations and goals of RUAG from section 1.4, a 

coherent framework will be developed. It will be documented in a written framework 

description.   

It is then determined whether the existing data is sufficient to support the application of the 

framework. According to the measurement levels, a minimum set of changes to the RUAG 

processes is developed. Those boil down to a process guideline describing what needs to be 

done to apply the framework at RUAG. 

 

The framework will then be analyzed statically by reviews or if possible through to the 

application of the framework in a real project and analyzing the data obtained after a certain 

period of time. Based on the feedback gained, the framework will be revised iteratively. 

 

Based on the framework and the evaluation a guideline is established giving improvement 

recommendations to RUAG.  

 

In cooperation with SSC it is evaluated how the framework can be adapted to a more agile 

process using interviews or workshops. A description concerning the suitability is developed 

including possible necessary adaptations. 

 

Figure 1 shows the research methodology as a workflow and describes in which steps the 

research questions are answered. 
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Figure 1: Research methodology 
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1.8 Thesis outline 
 

The thesis begins with a detailed view of the software development process at RUAG in 

chapter 2 to gain a thorough understanding of the environment. In chapter 3 the framework is 

detailed and in chapter 4 its application to RUAG is described. Chapter 5 outlines how the 

framework could be applied in an agile environment at SSC and chapter 6 concludes this 

thesis with a discussion.  
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2 RUAG DEVELOPMENT PROCESS 
 

2.1 ECSS Standard 
 

The European Commission for Space Standardization has defined a set of standards for 

management, product assurance and engineering [JON97]. Since the customers demand 

RUAG to follow the ECSS standard, it is necessary to take a closer look at the standard in 

order to understand the RUAG software development process.  

 

The ECSS parts related to software are the ECSS-E40 Part 1 and 2 for software [ECSE40-1] 

[ECSE40-2] as well as the ECSS-Q80 for software product assurance [ECSQ80]. The 

standard pays special attention to the requirements engineering, the architecture as well as 

verification & validation processes [ECSE40-1]. The standard follows a hierarchical 

customer-supplier model that means that the supplier of a product for a customer can in turn 

itself be a customer to a subcontractor.  

 

The ECSS Software Lifecycle process is depicted in Figure 2 and shows the processes (the 

bars) and the reviews (the circles at the bottom) which have to be carried out to be ECSS 

compliant. The software is developed in the system engineering, the SW requirements & 

architecture engineering, the SW design & implementation engineering and the delivery & 

acceptance process. In parallel to this, supporting processes and verification & validation 

processes are performed. 

 

 
Figure 2: ECSS Software Lifecycle Processes [ECSE40-1] 
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The reviews are the interaction points between the customer and the supplier and play 

therefore an important role in the ECSS standard. The need to be carried out at the end of the 

processes or sub processes and demand from the companies that documentation is available 

at these milestones that the processes and sub processes were carried out successfully. The 

full list of the reviews is shown in Table 2. 

 

SRR Software Requirements Review 

PDR Preliminary Design Review 

DDR Detailed Design Review 

CDR Critical Design Review 

QR Qualification Review 

AR Acceptance Review 

Table 2: Reviews in the ECSS 

 

The software requirements review (SRR) marks the beginning of the design phase and 

establishes the requirements baseline (RB) of the software development [ECSE40-1]. The 

supplier further elaborates the RB to a technical specification (TS). 

 

Based on the requirements in the technical specification, the architecture and design is 

developed in the SW requirements & architecture engineering. This process is completed 

with the preliminary design review (PDR) and leaves the software development in the so 

called specified state. 

 

After the PDR, the SW design & implementation engineering process is carried out in which 

the software is further designed and implemented. During this process, the supplier has to 

perform a unit test as well as an integration test. In the unit test the supplier is required to test 

all units against the requirements. In the integration test the developed aggregates are tested 

against the requirements. In parallel to this process, the validation against the technical 

specification has to be carried out.  

 

The design activities end with the critical design review (CDR) and must be undertaken 

before the software may be integrated with higher level systems in the hierarchy. With the 

CDR the software project is in the defined state and after that review every problem has to be 

documented in a software problem report (SPR).  

 

The CDR follows the SW delivery & acceptance and in parallel, the software has to be tested 

with respect to the requirements baseline. The next review is the qualification review (QR) 

that marks the end of all verification activities against the requirements baseline and leaves 

the project in a qualified state.  

 

The last review performed is the acceptance review (AR) by the customer. The end of this 

review marks the software project as being in an accepted state.  

 

Apart from these mandatory reviews, the SW design & implementation engineering process, 

i.e. the process between PDR and CDR, can optionally also include a detailed design review 

(DDR) and a test readiness review (TRR) if requested by the customer. Whereas the DDR is 

a review of the refined design and the TRR is conducted to assure that all test facilities and 

test cases are available at the start of the test campaign. 
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Additionally, the customer may require that further verification & validation is performed by 

an independent third party. These VAs are called independent software verification and 

validation (ISVV). 

 

2.2 V-model 
 

The ideal software development process at RUAG follows a classical V-model, depicted in 

Figure 3. On the left path the production phases are shown with the documents/artifacts that 

are produced and the right path shows the VAs that are carried out. 

 

 
Figure 3: Software development process at RUAG 

 

Since RUAG develops only hardware components as a whole and does not sell standalone 

software, the first part of the V-model contains both, hardware and software aspects.  

The process starts with RUAG getting the requirements from the customer in a so-called 

equipment requirements document (ERD), which consists of the whole system requirements 

including hardware and software.  

 

Based on this document, the requirements baseline (RB) is developed by RUAG, which 

consists of more detailed requirements and the separation into hard- and software modules 

(which is written down in the module requirements document (MRD)). The software 

modules are further specified in the software system specification (SSS), which describes the 

software. 

 

With the SSS, the software-only part of the V-model starts. From this SSS the technical 

specification (TS) is developed (also called software requirements specification (SRS)), 

which is more detailed and solution oriented than the SSS. This additional step might seem 

unnecessary, but is a requirement imposed by the ECSS standard. 

 

Based on the TS the design is carried out and a software design description (SDD) is 

developed, which further details the software system into units and is done using a modified 

(domain-specific) version of UML. Using this input, the software implementation phase 

starts and the source code is developed.  

 

After implementation, the V&V path of the V-model starts. Theoretically it starts with unit 

test (UT). The implementation phase and the unit tests however are not clearly separated, 

since the source code is verified during implementation by the developer performing the unit 

test while implementing the software.  
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The following step up the V-model is the code inspection (CI). Thereby, the software is 

verified using static analysis tools and several in-house-developed scripts, as well as manual 

code inspection using checklists.  

 

An integration test (IT) against the SDD follows the CI phase. This is a rather lightweight 

verification activity, since RUAG doesn‟t develop large-scale software systems with 

complex structures.  

 

After IT, a validation against the TS (VT-TS) is performed. The software is thereby 

validated against the TS using the validation tests.  

 

The final VA performed by RUAG is the validation against the requirements baseline (VT-

RB). 

 

The last step is the acceptance test, which is done either by the customer itself or by a third 

party, with the support of RUAG. 

 

One distinctive characteristic of RUAG is that the software is always developed in two 

separate and independent teams, the software design team and software validation team. This 

means, that no member of the first team may take part in any activity of the second team and 

vice-versa. The responsibility of the software design team is to specify, develop and verify 

the software, while the software validation team‟s responsibility is to validate it.  

The rationale behind this is to remove the bias a developer has when testing his own 

software, and thus increase the probability to find more defects. 

 

Hence, the responsibilities of the software design team are 

 

 Requirements verification 

 Design verification 

 Code verification 

 Module testing 

 Module test verification (i.e. verification of the module test w.r.t. the  detailed design 

specification) 

 Integration testing 

 

The responsibilities of the software validation team are 

 

 Validation testing 

 

2.3 ECSS Compliance 
 

The RUAG process model is aligned to the ECSS standard, since most of RUAG‟s 

customers demand this. As described in section 2.1, RUAG needs to comply with the 

following reviews: 

 

 Software Requirements Review (SRR) 

 Preliminary Design Review (PDR) 

 Critical Design Review (CDR) 

 Quality Review (QR) 

 Acceptance Review (AR) 
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The mapping of the phases of the RUAG software development process to the ECSS 

standard is shown in Figure 4. Thus, the figure shows which activities are performed in 

between the ECSS reviews. Note that the ECSS not only requires the reviews to be taken out 

but also requires certain VAs to be performed. RUAG complies to this requirement by 

having the same VAs as demanded by the ECSS (plus an additional code inspection) and 

follows the demands imposed on each VA by the ECSS. 

 

 
Figure 4: ECSS compliance of the RUAG software development process 

 

The software system specification (SSS) along with further system and project planning 

work is done by the system team until the SRR.  

 

The more detailed software requirements specification (SRS) and the software detailed 

design (SDD) are then developed until PDR and reviewed. I.e. the design review DR 

performed by RUAG can be mapped to the PDR.  

 

This activity follows a detailed design that further specifies the interfaces and describing 

what each function does and how it is done. The detailed design is completed with the 

detailed design review (DDR), which is not mandatory in the ECSS standard.  

 

After DDR, the code is implemented, unit tested and code inspected, and is completed with 

the test-readiness review (TRR), which is also not mandatory in the ECSS standard.  

 

The integration test and validation against the technical specification is finished until the 

CDR. 

 

Between CDR and QR, the validation against the requirements baseline is performed. 

 

Finally, the last activity in the RUAG development process, the acceptance test, is conducted 

until the AR.  

 

2.4 Verification & Validation Activities  
 

This section describes the verification & validation activities (VAs) that are carried out at 

RUAG in more detail. Note that the requirements review is left out, since it was out of scope 

of this research and was part of another research project. 
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2.4.1 Design review 
 

In the design review, the software design document (SDD) is reviewed against a checklist by 

typically 3-4 team members. The faults and problems found are reported in the review 

document along with a short description. 

 

2.4.2 Unit test 
 

The unit test activity is performed to verify the implemented module against its specification.  

The test cases are written and executed by the developer. Which test cases have to be 

performed is documented in a unit test plan. 

 

The test case selection follows a black-box approach. The internal structure is however also 

considered to analyze problems within the module (white-box approach). Following the 

black-box approach, the SW is tested without consideration of the internal structure. The 

selection of the test cases is hereby based on 

 

 Equivalence partitioning 

 Boundary-value analysis 

 

Additionally, test cases are selected to test mathematical algorithms within the module (e.g. 

for synchronizing the time, checksum creation, etc.) should be checked. This is rather a grey-

box view of the module. The test cases should take into account: 

 

 Nominal values 

 Extreme values 

 Accuracy 

 Overflow/Underflow 

 Division by zero 

 

The white-box test cases are selected based on different coverage criteria, which depend on 

the project. In a typical project, the source code is tested for statement coverage, branch 

coverage and condition coverage.  

 

Furthermore, the module is robustness- and stress-tested. Robustness concerns testing invalid 

input, which is not already covered with the equivalence partitioning. Although stress testing 

is usually performed on a higher level like e.g. integration test, single modules may also be 

stress-tested for allocation of resources, filled-up queues, or the like. 

 

A module passes the unit test when all the required test cases have been successfully 

executed and passed. 

 

Tool support 

 

The Unit Test activity is created and performed by the developer of the module himself, but 

cross checked by another developer. The main tools that are used in this activity are Splint 

[SPL07] and Cantata. Splint is a tool developed by the Inexpensive Program Analysis Group 

at the University of Virginia and allows the static checking of C programs for security 

vulnerabilities and coding mistakes. It provides more extensive checks than compilers, such 

as e.g. unused declarations, type inconsistencies, use before definition, unreachable code, 

ignored return values, execution paths with no return, likely infinite loops, etc.[UOV03]. 

Cantata++ is a tool developed to efficiently perform unit and integration testing and is 

developed by the IPL Information Processing Ltd [CAN09]. It allows the automated 

execution of white and black box test cases [IPL09].  
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RUAG does not prescribe the developer when to perform the unit tests. Therefore, a 

developer might develop and run the tests at the end of implementation, while another might 

develop and run the tests already during implementation, as can be seen in Figure 5. 

 

 
Figure 5: Differences in the use of unit testing 

 

Regression activity 

 

Unit test regression is performed by updating the unit tests to ensure that the black box and 

white box criteria are met for the modified code and all tests are rerun for the changed 

module. 

2.4.3 Code inspection 
 

In the CI, the code is analyzed using checklists, the logs from the previously described Splint 

tool and an analysis of different code metrics like LOC, number of return & goto statements, 

and the maximum nesting level as well as the cyclomatic complexity. The checklist, the 

Splint logs and the code metrics are stored automatically along with the source code (which 

is typically 5-10 pages) in a Word file.  

 

Regression activity 

 

The regression tests in this VA may be limited to the part of the source code that is directly 

or indirectly affected by the change. 

2.4.4 Integration test 
 

The integration test aims for dynamically testing the interaction of the modules and is 

performed on the target hardware platform. The IT is a rather lightweight VA and comprises 

 

 A test of the SW on the HW 

 Testing of each calling-called interaction between SW components, i.e. whether all 

relationships between the modules as indicated in the design occur when running the 

software  

 Testing of each provided functionality of every module at least once 

 

Additionally, timing constrains might also be measured. 

 

The integration test is done for every block defined in the architectural design and is 

performed automatically using the validation test cases. The calling-called relation is verified 

by running instrumented software that logs calls during runtime. 

 

Regression activity 
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The regression test is performed by analyzing if new calling-called relations were 

introduced. The test cases are then updated to cover these new relations. All tests are then 

rerun.  

2.4.5 Validation against the technical specification  
 

The aim of the validation against the technical specification (TS) is to validate that all 

requirements of the TS are met. This validation is done on the target HW platform. 

Additionally, the following tests are performed: 

 

Performance test Verification that the performance requirements 

are met 

Interface test Test of how the SW communicates with other 

components, especially the HW 

Robustness test Simulation/injection of errors 

Stress test Pushing the SW to its limits by putting a high 

load on the resources 

Long-time test Test the SW for a longer time 

Table 3: Additional tests performed during validation 

 

The validation tests are performed automatically if possible. Where automated tests are not 

feasible (e.g. it is not possible to simulate a specific environmental condition), an analysis of 

the source code is performed with the result of a justification why the test passed or failed. 

 

Regression activity 

 

The regression tests in this VA may be limited to the part of the source code that is directly 

or indirectly affected by the change. 

 

2.4.6 Validation against the requirements baseline  
 

This VA is similar to validation against the TS, but with respect to the requirements of the 

RB. Technically, that makes no major difference for RUAG, so that the same test cases as in 

validation against TS are used, though they sometimes might be adapted slightly. The only 

difference is that the documentation is done differently, i.e. the traceability matrix is 

according to the requirements of the RB. The reason for having a second validation activity 

even though the test cases are almost the same is that this activity is a legal requirement of 

the ECSS standard.  

 

Regression activity 

 

The regression tests in this VA may be limited to the part of the source code that is directly 

or indirectly affected by the change. 

 

2.4.7 Acceptance review 
 

The acceptance review is a validation with respect to the ERD, done by the customer or a 

third party. Apart from providing support with the test environment, RUAG is usually not 

involved in this activity. 

 

Table 4 shows a comparison of the different VAs. 
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VA Test  

cases 

Check- 

list 

Automatic 

aspects 

Manual aspects Team involved 

Design review  X  Checklist based 

reading 

Design team 

Unit test X  Test cases 

executed 

automatically 

Test case creation Design team 

Code inspection  X Inspection 

sheet created 

automatically 

Checklist based 

reading 

Design team 

(different 

person than the 

developer of the 

module) 

Integration test X  Test cases 

executed 

automatically 

Test case creation 

(Partly test case 

execution) 

Design team 

Validation test 

against technical 

specification 

X  Test cases 

executed 

automatically 

Test case creation 

(Partly test case 

execution) 

Validation team 

Validation test 

against 

requirements 

baseline 

X  Test cases 

executed 

automatically 

Test case creation 

(Partly test case 

execution) 

Validation team 

Acceptance 

review 

X  Test cases 

executed 

automatically 

Test case creation 

(Partly test case 

execution) 

Validation team 

Table 4: Comparison of verification & validation activities 

2.5 Detailed Development Process 
 

The V-model described in section 2.2 describes the formal software development process of 

RUAG. In an ideal case, the software development would follow a strict waterfall principle 

as shown in Figure 6.  

 

 
Figure 6: Ideal Process 

 

As with any other industry, time-to-market is also a key factor in the aerospace industry, and 

therefore RUAG develops and tests in parallel to speed up the development and to find faults 

in the software as early as possible. Hence, although activities are performed sequentially for 

one module as prescribed in the V-model, several different activities might be ongoing at the 

same time for different modules. Additionally, the VAs may be executed several times. E.g. 

if a piece of source code was rejected in a CI, the developer has to modify the code, unit test 

it again and then, the CI is performed again.  
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Furthermore RUAG is changing from a traditional waterfall-like to an integration-driven 

process.  

 

This makes it necessary to take a closer look at the development processes as they are 

performed in practice for both the former process as it was done until recently and the new 

integration-driven process as it is done today. 

 

2.5.1 Former process 
 

Figure 7 shows the former process on a fictitious software project that is developed by the 

design team (upper part) and tested by the validation team (lower part) and contains three 

modules Modx, Mody and Modz. As shown, the modules are subsequently implemented, unit 

tested, code inspected and finally integrated. In parallel the validation team starts already to 

validate each module until the final integrated software is available and the final test 

campaigns are executed. 

 

 
Figure 7: Detailed view of the former process 

 

A VA for a module is started as soon as the previous activity is finished. This means that for 

instance when a module is implemented and unit tested, it is directly sent to code inspection. 

Similarly, the validation team starts already to test in parallel as soon as some modules are 

finished.  

 

Integration is done after the source code has been unit tested and inspected. The source code 

can have passed these phases however several times, e.g. when the CI rejected a module. 

Also, if problems are found during integration, the UT and CI are performed again. The 

modules are therefore constantly integrated until all modules have been integrated.  The end 

of this phase marks a test-readiness review (TRR). This however differs from project to 
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project. Usually this is an informal meeting where it is decided to pass over to the formal 

integration test, but can also be externally done by a third party. 

 

 

In parallel to the software production, the VT-TS test cases are specified, which are also used 

for the IT. The VT-TS are already executed informally during this time, i.e. before TRR is 

reached and the formal VT-TS campaign starts. The rationale behind this is to start testing 

and finding defects as early as possible in the process and better utilize the human resources, 

since the software validation team performs this activity and not the software development 

team. Hence, by starting early, the work-intensive test case (TC) development is done early 

and in parallel so that the TCs are ready to use for the official VT-TS which has to be 

performed after TRR. 

 

The point in time when this informal execution of the VT-TS test cases is conducted differs 

from project to project. In one project it was done after a planned time schedule, i.e. not 

related to the completion of a CI, I/UT or IT. Hence the source code could have been in any 

state (e.g. not yet finished unit tested) while running the VT-TS. However, the VT-TS test 

cases for one module usually are not run before the module had been code-inspected at least 

once. 

 

Usually, a rework of the VT-TS TCs is done after the integration has finished, based on the 

coverage information obtained from this activity. That means that the TCs at this point in 

time usually do not completely reflect the coverage demands and therefore have to be 

modified. 

 

With the same rationale as for the VT-TS, the integration tests are also already performed 

during integration of the modules. Therefore, several integration test cases have already been 

executed before the TRR has been reached and the software is officially ready for the 

integration test campaign. These tests are however performed only informally, and after TRR 

a formal integration test is performed again.  

 

After the formal IT campaign the VT-TS campaign starts. The difference between these two 

phases is that the IT is done on modified software which contains additional code for testing 

purposes such as logging outputs to measure the coverage. 

 

A side-effect of this way of work is that it is not possible to clearly state the start and the end 

of a VA from a process point of view, since every type of VA might be going on in different 

modules at different points in time. Hence, when observing the ongoing VAs from the 

outside, an overlap in VAs can be recognized, as depicted in Figure 8. 
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Figure 8: Process view on the former process 

 

The upper part of Figure 8 shows the module view, i.e. the activities that are performed for 

each module. The lower part shows in contrast the process view, i.e. all activities that are 

going on at any time during the software development process.  

 

In the module view, the process looks strictly sequential for each module. E.g. CI cannot 

start while the module is still being implemented and unit tested. Similarly, the integration 

cannot start before the modules have been code inspected. One exception to this is again the 

VT-TS activity, since this activity is always done in parallel and independently by the 

software validation team.   

 

The process view in the lower part shows for each activity when it is performed. In the 

beginning e.g. a large period of implementation is going on, in which several modules are 

developed, while in the end, integration becomes a larger part. Thus, when considering all 

modules at once, then the process is not strictly sequential anymore (lower part of Figure 8). 

This means, that basically any activity (I/UT, CI, I-IT, VT-TS) might be going on at any 

point in time in the software production phase. E.g. a CI might be going on while also an 

I/UT is going on, though for different modules.  

 

2.5.2 Integration-driven process 
 

In the current and future projects, RUAG is doing an integration-driven approach to develop 

SW as shown in Figure 9. Typically, the SW is developed in three iterations, starting with 

core functionality (e.g. boot SW) and finishing with more application-level modules. Hence, 

the main difference to the old process is that the implementation of the modules is not started 

all at once anymore, but begins with this core functionality. The development of the next 

component only begins when the previous component is being integrated.  As with the old 

process, problems during integration will trigger regression unit-tests and code-inspections 

for the modified code.  
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Another difference to the former process is that the informal execution of the VT-TS test-

cases must be done now after the module has been code-inspected at least once.  

 

 
Figure 9: Integration-driven process 

 

Hence, the process view for the integration-driven process looks as in Figure 10. Once again, 

if only a single module is considered, the activities follow a strictly sequential waterfall-like 

process. If however all modules are observed at once, any activity might be going on at any 

point in time, as indicated by the process view in the lower part of Figure 10.  
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Figure 10: Bird‟s eye view on the integration-driven process 

 

2.5.3 Atomic activities 
 

The aforementioned overlapping of the activities and the usage of informal test campaigns in 

the software development process make it necessary to have a more fine-grained view on the 

VAs in particular with regard to possible defect data sources.  

 

Table 5 shows the new list of activities, with the newly split activities marked grey. The IT is 

split into an informal IT (I-IT) and the formal IT which is performed after TRR. Similar is 

the VT-TS split into an informal VT-TS (I-VT-TS) and the formal VT-TS conducted after 

TRR and IT.  

 

Abbreviation Activity 

DR Design Review 

DDR Detailed Design Review 

UT Unit Test 

CI Code Inspection 

I-IT Informal Integration Test 

(F-)IT Formal Integration Test 

I-VT-TS Informal Validation Test against the Technical Specification 

(F-)VT-TS Formal Validation Test against the Technical Specification 

VT-RB Validation Test against the Requirements Baseline 
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AR Acceptance Review 

Table 5: List of atomic activities 

 

Additionally, the following activities might be performed by external third parties: 

 

Abbreviation Activity 

X-DR External Design Review 

X-DDR External Detailed Design Review 

X-CI External Code Inspection 

X-VT  External Acceptance Review 

Table 6: List of external activities 

 

Regression activities 

 

One might argue that the VAs could also be split into normal usage and regression usage. 

Since the test cases are the same in for normal and regression usage, it is not possible that a 

fault slipped through to a regression usage in UT, IT, VT-TS or VT-RB, that wasn‟t detected 

in the normal usage. Therefore a fault slippage to regression usage may only appear in DR, 

DDR and CI that are reading-based techniques.  

One rare occasion where other faults slipped-through faults are found in regression testing is 

that due to the modification of the source code, the TC needs to be adapted and through this 

adaption of the TC a slipped-through fault was detected.  

 

Since these two occasions are considered to happen very rarely in reality, it was decided to 

use the simplified version without the distinction between normal and regression usage to not 

further complicate the process and the framework. Therefore, this distinction needs to be 

further investigated in future work. 
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3 VAMOS FRAMEWORK 

3.1 Introduction 
 

This section describes the framework for the management & optimization of verification & 

validation activities, in the following abbreviated with the acronym VAMOS. In the 

following, the goals of the framework are recapitulated and the fault terminology is clarified. 

Section 3.3 gives an overview of the framework and the sections 3.4, 3.5 and 3.6 detail the 

framework components. 

 

3.1.1 Goals 
 

As outlined in section 1.6.1, the goal of the framework is to create a coherent framework for 

the management and optimization of the software verification and validation activities. This 

framework shall allow comparing the effectiveness and efficiency of the VAs in eliminating 

different types and optimizing the VAs.  

 

The overall goal can be further broken down into the four sub goals with the related 

questions: 

 

1. Gain more insight into the VAs. 

Which VA finds which faults? 

Which VA is more efficient / less efficient? 

Which VA is more effective / less effective? 

 

2. Find out which faults a VA finds and which faults slip through. 

Which VA does not find the faults it is supposed to find? 

 

3. Find out where there is an overlap, i.e. which VAs find the same defects. 

Which VAs find the same kinds of faults? 

Which VAs should change its focus? 

 

4. Find out how to improve the process. 

How do the VAs need to be changed to improve them? 

 

3.1.2 Error, fault, failure and defect 
 

In the literature, there is no clear definition of the words error, fault, defect and failure. The 

IEEE Standard Glossary of Software Engineering Terminology [IEE610] e.g. defines the 

words error, defect, fault, mistake and bug basically as synonyms and only notes that in the 

fault tolerance discipline the terms are used differently. There, a human action, the mistake, 

manifests in the software, the fault, which results in a failure. The error is thereby defined as 

the amount by which the result is incorrect.   

Avižienis et al. define in [AVI00] the term error as the part of the system state which causes 

a subsequent failure which in turn is defined as that the software does not comply with its 

service interface. The fault is the actual cause of the error. 

Liggesmeyer [LIG08] defines the term failure as an inconsistent behavior during runtime of 

the software w.r.t. its specification.  A defect, fault or bug is the statically existent cause of 

the failure and the term error is used as the basic cause of a fault. 
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For simplification purposes, the terms defect, fault, error and bug are used synonymously 

throughout the thesis for the origin or basic cause of a defect if not stated otherwise. 

 

Since RUAG also attaches great importance on correct and understandable documentation to 

achieve a better maintainability, problems in the documentation are also considered as 

defects. 

 

3.2 Related Work 
 

Instead of focusing on a single verification and validation activity, academia [KIT98], 

[WOO97], [LIT00] and industry [KIK01] show that combining different VAs can be more 

efficient in finding defects. To overcome the constant market pressure in industry, further 

investigation is necessary to guide industry on how to select VAs to maximize the defect 

detection efficiency while minimizing the effort spent. Some initial work that has been done 

towards the creation of a comparison framework is presented in the following. 

 

In [WOJ07] Wojcicki and Strooper present an iterative selection strategy (ISS) for 

verification & validation activities.  The selection of VAs is hereby refined based on cost-

effectiveness data to maximize completeness while minimizing the effort.  

 

In [DAM06], the concept of Fault-Slip-Through (FST) is presented. In this approach, the 

faults found in each VA are categorized according to which phase they belong to, i.e. in 

which VA they should have been found. Based on these findings and the effort of the VA, 

the improvement potential for each activity is calculated. 

 

Since these two approaches, ISS and FST, build up the foundation of this framework, they 

will be presented in more detail in the subsequent chapters. 

 

Wagner [WAG05] proposes a more analytical approach. The defect detection techniques are 

thereby compared using an economical metric, namely the return on investment (ROI). The 

model also considers the effect of combining different defect detection techniques. 

 

A framework for the comparison of testing activities and formal verification is presented in 

[BRA06]. However, this approach focuses more on studying the synergy and relationship of 

these two activities and doesn‟t give any advice on how this combination can be optimized.  

 

There also exists an IEEE Standard 1061 [IEE1061] related to software metrics and 

measurement. It defines a methodology for establishing quality requirements and finding, 

measuring and validating appropriate software product and process metrics.  

 

Apart from these frameworks and models which are developed specifically for the 

optimization of VAs, there exist also traditional frameworks like QIP [BAS94], Six Sigma 

[TAY02] or the SEI measurement process [MCA93] that consider improving the software 

development process in general. 

 

In the following, the general process improvement frameworks and the ISS, FST and the 

approach by Wagner are explained in more detail, since these frameworks/methods build up 

the foundation of VAMOS.  
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3.2.1 Process improvement frameworks 
 

3.2.1.1 Quality Improvement Paradigm (QIP) 

 

In [BAS94] Basili et al. present an iterative process improvement framework called Quality 

Improvement Paradigm (QIP). QIP consists of six process steps as shown in Figure 11.  

 

 
Figure 11: Process Steps of QIP [BAS94] 

 

To understand the QIP process, it is important to know that this process was developed as 

part of an experience factory to systematically collect the experiences gained in previous 

projects and learn from that. As such, the QIP process works best for companies that have 

already conducted several projects and/or are conducting multiple projects at once and thus 

have a large experience base. 

Therefore, the QIP process starts with a characterization step, where the current project is 

characterized according to existing attributes from the experience base. This is done to find 

similar projects and thereby set the context for the goals and the process.  

 

After characterizing the process and project quantifiable goals are defined for the 

improvement of the process.  

 

The next step in QIP is to choose a software development process for the project, like e.g. 

the waterfall model, based on the previously made characterization. 

 

The project is then developed according to the chosen process in the execute step. The 

process should thereby reuse existing knowledge from the experience base. Data collection 

methods must be included into the process in order to judge later-on whether the goals were 

fulfilled or not.  

 

After the project has been finished, the data is analyzed and any findings such as problems 

and lessons learned are documented.   

 

In the last step called package, the experience base is updated with the information gained in 

the project.  

 

QIP is a general framework to improve any kind of software processes [BAS94]. As such, 

QIP defines what has to be done for continuous software improvement, but not how it is 

done. It especially relies on GQM (see section 3.2.1.2) to define the measurements that will 

be used in the project to allow evidence-based process improvement. 
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3.2.1.2 Goal-Question-Metric (GQM) 

 

In [BAS94-2] Basili et al. define a formal, goal-oriented approach to derive measurements to 

support the feedback and evaluation of the software process.  

 

 
Figure 12: Goal-Question-Metric Approach [BAS94-2] 

 

The methodology consists of three levels as shown in Figure 12, namely conceptual, 

operational and quantitative.  

In the conceptual level, goals are defined for objects of measurements, which can be 

products, processes or resources. In the context of process improvement, a goal could be e.g. 

to “improve the timeliness of change request processing from the project manager‟s point 

viewpoint”. Note however, that GQM is not only constrained to process improvement. QGM 

does not prescribe that the goal has to be an improvement; a valid goal e.g. could also be to 

understand a process [BAS94-2].  

In the operational level, a set of questions is developed which if answered, give information 

on whether the goal was fulfilled or not. 

In the quantitative level, measurements are developed that try to answer a question in a 

quantitative way. The data obtained from the measurement can be either subjective or 

objective.  

 

3.2.1.3 Six sigma 

 

In Six Sigma the process is iteratively improved in five phases, namely Define, Measure, 

Analyze, Improve and Control [TAY02]. Figure 13 shows this iterative DMAIC process of 

Six Sigma. Since Six Sigma is a general improvement framework, it begins with a define 

phase, in which the process is analyzed and the problems are discovered. The problem is 

then quantified through the measurement step. In an analyze step the root-cause of the 

problem is then discovered and in the improve phase the process is changed to prevent the 

problem from occurring again. In a final step, the control step, it is assured that the problem 

does not reappear again and the changes still work.   

 

 
Figure 13: DMAIC process steps of Six Sigma [TAY02] 



  29 

3.2.1.4 SEI measurement process 

 

In [MCA93] a process for developing a measurement process in a company is defined. 

Although it is not defined as a process improvement framework but as a framework to derive 

a measurement process, it‟s goal is to provide more insight into the  processes to make better 

decisions [MCA93] and thus allowing for a SPI. 

 

It is divided into three parts planning, implementing and improving as illustrated in Figure 

14. In the planning phase, the scope is identified, i.e. the problem is defined, and procedures 

are established for the measurement of the data. In the implementation phase, the data is 

collected respectively measured. Furthermore the analysis is performed to derive the root 

cause of the problem. In the last step, changes are derived to improve the process.   

 

Thus, it is similar to Six Sigma and contains the same phases define the problem, measure 

the data, analyze it and then improve the process. The SEI process skips however the control 

phase of Six Sigma. 

 

 
Figure 14: Measurement Process from the Software Engineering Institute [MCA93] 

3.2.1.5 Discussion 

 

The processes described above (except for GQM) are based on the well known plan-do-act-

check process for business improvement introduced by Deming and Edwards [DEM86]. The 

basic idea is an iterative process, in which the problem is defined or analyzed, it is further 

quantified in a measurement phase, then the root-cause is analyzed and finally an 

improvement is implemented.  

 

Since all the processes aim for general applicability, they lack concrete guidelines to address 

the problems stated in section 1.4. 

 

3.2.2 Verification & validation optimization frameworks 
 

Apart from these general process improvement frameworks, methods which are more 

focused on VAs exist, most notably the iterative selection strategy (ISS) developed by 



  30 

Wojcicki  and Strooper [WOJ07] and the concept of fault-slip-through (FST) by Damm et al. 

[DAM06] which are described in the following. 

3.2.2.1 Iterative selection strategy (ISS) 

 

A way to select VAs from an existing set of available VAs is presented by Wojcicki  and 

Strooper in [WOJ07]. The approach focuses on minimizing the effort that is spent on the 

VAs by simultaneously considering the completeness of VAs. This means each defect types 

should be found by at least one VA. The strategy for the selection of the VAs is done 

iteratively in the sense that it is refined in every cycle with the data obtained from the 

measurements in the previous cycle(s). 

 

The strategy consists of the following four steps: 

 

1. Gathering of cost-effectiveness information 

 

First of all, the cost and effectiveness data are obtained. That means that for each VAx and 

each fault type FTy, it is determined how effective the VAx is in finding the defects FTy. and 

how much effort must be spent to find that fault. If no empirical data are available the data 

can also be obtained with expert opinion. The effort and effectiveness values should be 

entered as normalized values into a cost-effectiveness matrix in the form X[Y] as shown in 

Figure 15, where X indicates the effort and Y the effectiveness. The rows indicate the 

different VAs and the columns indicate the defect types of interest.   

 

 
Figure 15: Effort and effectiveness matrix [WOJ07] 

 

 

2. Maximizing completeness 

 

In this step the matrix is first transformed into a relative form which shows how the VAs 

compare to each other, as shown in Figure 16. A simple value range of High, Medium and 

Low may be used.  

 

 
Figure 16: Simplified effort and effectiveness matrix [WOJ07] 

 

A selection of VAs is now made that covers all defect types, thus ensuring completeness. 

 

3. Minimizing effort 

 

Several combinations might be possible that cover all defect types, thus in this step the 

selection with the minimum effort is chosen. 
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4. Gathering and updating cost-effectiveness data 

 

In the last step of the iterative selection strategy (ISS), the VAs are applied in a project and 

empirical data is measured to update the cost-effectiveness matrix with more accurate values 

than the estimates from the first iteration.  

 

The four steps of ISS are shown in Figure 17. 

 

 
Figure 17: Workflow of the iterative selection strategy [WOJ07] 

 

Discussion 

 

The iterative selection strategy provides a systematic way to minimize the effort that is spent 

on VAs. The problem of this process is that it assumes that the organization has the choice of 

which VAs it uses. Furthermore does it require the company to have a larger set of VAs to 

choose from and that a company can change their VAs on a project-by-project basis.  

 

In the Space industry though, the companies are often bound to a certain set of VAs which 

are prescribed by standards like the ECSS or the customers. Even if the company has not 

been prescribed which VAs to use, the high dependability and reliability requirements make 

it necessary to rely on proven defect detection techniques, thus it is not possible for the 

organization to exchange VAs.   

 

Therefore, the Space industry needs a more fine-grained optimization framework than the 

ISS, since the choice of the VAs is more conservative than in other industries and cannot be 

changed that easily. A framework is therefore necessary that focuses more on improving the 

current VAs and removing overlap on a finer level on the defect types.  

 

3.2.2.2 Faults-slip-through 

 

Damm et al. present in [DAM06] the concept of fault-slip-through (FST) for improving VAs 

with respect to cost-effectiveness data. In contrast to the traditional opinion, that it is best to 

find faults as early as possible, Damm et al. reason that it might not always be cost-effective 

to find them as early as possible. The rationale behind this is, that to find a certain defect 

directly in the phase where it was introduced might require the introduction of a heavy-

weight VA like e.g. conceptual modeling.  

 

Thus, the concept considers the fault-slippage, i.e. the time between where the fault was 

found and where it is most cost-effective to find, instead of considering the fault-latency, i.e. 
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the time between where the fault was found and where it was introduced, as shown in Figure 

18. 

 

  
Figure 18: Fault slippage vs. fault latency [DAM06] 

 

Based on the findings, an improvement potential (IP) of each phase is calculated. This value 

indicates the possible savings if the faults are found earlier and thus is calculated as the 

difference between the actual fault cost and the fault cost if none of the faults had slipped 

through. 

 

The improvement potential is determined in three steps: 

 

1. Determine faults that could have been avoided 

 

Before the faults can be classified according to which phase they belong to (PB), a test 

strategy must be developed that defines what should be tested in which VA and hence, which 

VA should find which fault. Based on this test strategy, the fault-slip-through is measured 

and entered into a matrix showing where faults are found (PF) and to which phase they 

belong (PB), as shown in Figure 19.    

 

            PF 

PB           

Design Impl. Function 

Test 

System 

Test 

Operation Total 

PB/phase 

Design 1 1 10 5 1 18 

Impl.  

 

4 25 18 2 49 

Function 

Test 

 

 

 

 

15 5 4 24 

System 

Test 

 

 

 

 

 

 

13 2 15 

Operation  

 

 

 

 

 

 

 

0 0 

Total 

Potential 

PF 

1 5 50 41 9 106 

Figure 19: Fictitious example of fault-slip-through data [DAM06] 

 

2. Determine average cost 
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After the categorization the average cost of finding a defect in a VA must be determined for 

all VAs. The average cost should include the time to find and fix the defect and also the time 

spent on regression testing. The values might be obtained from a time-reporting system or 

expert estimation. 

 

Design Implementation Function Test System Test Operation 

1 2 10 25 50 

Table 7: Example average fault cost [DAM06] 

 

3. Determine the improvement potential 

 

With the fault-slip-through data and the average cost to find a defect in a certain VA, the 

improvement potential can be obtained. The IP is calculated for a VAy and a VAx and 

defines the amount of time which can be saved if all faults that slipped through from VA y to 

VAx would have been already found in VAy. Thus, the IP can be calculated for each PB with 

respect to each PF as shown in Figure 20.  

 

 PF1 PF2 PBtotal 

PB1 IP11 IP21 PB1 total 

PB2 - IP22 PB2 total 

PFtotal PF1 total PF2 total (PB/PF) total 

Figure 20: Improvement potential matrix [DAM06] 

 

The formula for calculating the IP for is defined as follows: 

 

 
 

Thus, it is calculated as the difference between what the fault costs are now (i.e. after 

slipping through) and what the cost could have been if they had not slipped through and were 

found in the VA where they were supposed to be found. The calculated sums in the last 

column therefore define the total IP for a VA and show how many hours can be saved if no 

fault slipped through the VA at all. 

 

The calculated IPs for the example are shown in Figure 21 and show that the implementation 

phase has the highest IP. 

 

               

PF 

PB           

Design Impl. Function 

Test 

System 

Test 

Operation Total 

PB/phase 

Design 0 1 x 2 –  

1 x 1 

= 1 h 

10 x 10 – 

10 x 1 

= 90h 

5 x 25 – 

 5 x 1 

=  120h 

1 x 50 – 

1 x 1 

= 49h 

260h 

Impl.  

 

0 25 x 10 – 

25 x 2 = 

200h  

18 x 25 – 

18 x 2 

= 414h 

2 x 50 – 

2 x 2 

= 96h 

710h 

Function 

Test 

 

 

 

 

0 5 x 25 – 

5 x 10 

4 x 50 – 

4 x 10 

235h 
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= 75h = 160h 

System 

Test 

 

 

 

 

 

 

0 2 x 50 – 

2 x 25 

= 50h 

50h 

Operation  

 

 

 

 

 

 

 

0 0h 

Total 

Potential 

PF 

 

 
1h 290h 609h 355h 1255h 

Figure 21: Improvement potential matrix with sample data [DAM06] 

 

Based on the IP, it can then be decided which VA should be optimized to gain the highest 

benefit from the improvement. 

The concept is further extended in [DAM05] to include fault types. The fault types are 

however not incorporated into the calculations and are only used to facilitate the analysis. 

 

Discussion 

 

Instead of trying to find the faults in the phase where they were introduced, the concept of 

FST tries to find the faults where they are most cost-effective to find. Thus it incorporates 

economic aspects into the improvement considerations and serves therefore as the basis of 

this framework. 

 

The major drawback of the concept is that it only defines the calculations but does not define 

how the data can be obtained in measurements and how improvements are derived from the 

IPs.  

 

Another problem exists when trying to classify to which VA a defect belongs to, i.e. in 

which VA it should have been found. This requires a well-defined test strategy that clearly 

states for each defect in which VA it should be found. Since the defects can be very different 

in their nature, this test strategy would also have to comprise all kinds of defects.  

 

Furthermore in meetings with representatives of RUAG it became apparent that it is difficult 

to judge when a defect should have been found and that it is easier for the developer to say 

when a defect could have been found. Although this looks like a minor difference in 

wording, the term should implicitly requires that the developer knows a test strategy, even if 

none such exists. Note that this is however still an open issue that has to be solved in future 

work, as the ultimate goal is to make evidence-based decisions on when a fault should and 

could have been found to correctly improve the processes. 

 

3.2.2.3 Analytical model of the economics of defect-detection techniques 

 

Wagner proposes in [WAG06] an analytical model of the economics of VAs that is aimed at 

evaluating and improving VAs. The model uses different fault types and the difficulty of a 

VA to find these fault types to calculate the costs.  

 

The model consists of the three components direct costs, future costs and revenues. The 

direct costs are the costs of the VAs which can be directly measured. The future costs are the 

costs that occur if the defects are not found in one of the applied VAs. Thus, the future costs 

indicate the costs that occur when the faults slip through to operation. Finally, the revenues 

indicate the savings that can be achieved if no fault slip through occurs. Based on these three 
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components, a return-on-investment can be calculated that indicates the ratio between the 

benefits and the costs (or investments) of the VAs. 

 

Discussion 

 

The model presented by Wagner proposes an analytical model of the quality-economics of 

VAs, which is however designed as an ideal model and not aimed to be practical applicable 

[WAG05]. As such, the model tries to represent the faults as realistic as possible and 

furthermore requires probability functions about the effectiveness of the VAs. Wagner 

considers in particular the different manifestations of a fault in the software artifacts as 

separate faults. A fault which was introduced in the software design and causes two lines in 

the source code to be wrong would therefore be considered as three different faults in the 

Wagner model. Although this is a very fine-grained view on the defects and their 

corresponding costs, it is too complex to be used in an industry setting.  

 

Furthermore does the Wagner model only consider the revenues gained when no faults slip 

through to the system operation. Thus, it does not consider the benefits of a reduced fault 

slippage between the earlier and the later VAs.  

 

The Wagner model builds however the foundation for the cost-considerations of the 

framework and is therefore described in more detail in the subsequent sections. 
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3.3 Overview 
 

The basic structure of the VAMOS framework is depicted in Figure 22. The framework 

follows an iterative process similar to the continuous process improvement frameworks 

presented in section 3.2.1 and the iterative selection strategy presented in section 3.2.2.1 and 

consists of four steps measure, analyze, improve and implement. The necessary inputs of the 

framework are cost and defect data, as well as a fault classification. The iterative process is 

surrounded by two quality gates, namely the measurement options model (MOM) and the 

adaptive defect classification (ADC), which the quality of the input measurement processes 

and the fault classification. A further define phase allows for a parameterization of the 

framework to adjust it to the company‟s needs.  

  

 
Figure 22: VAMOS framework structure 

 

In the first step, the necessary data is measured. This data is then analyzed to find out the 

problems in the VAs using the concept of FST. In the improvement phase, adequate changes 

are developed to address these problems and are then evaluated with respect to the benefit 

they produce. In the last step, these changes are implemented in the company.  

 

Since this is an iterative cycle, any supposed benefit will be measured in the next iteration 

and thus, can be directly evaluated.  

 

The process steps are explained and detailed in section 3.6.  

 

As the framework is based on the FST [DAM06] and the ISS [WOJ07], the framework 

requires certain inputs, which are basically the defect data, i.e. how many faults are found in 

each VA, and the cost data, i.e. how much does it cost to perform the VA and how much 
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does it cost to fix a defect. Furthermore, a fault classification is needed which is used to 

classify the defects and facilitate the root-cause analysis.  

 

Section 3.4 gives further information on the inputs. 

 

Typically, companies already have some sort of cost and defect measurement established, 

e.g. through a work tracking tool and a defect reporting system. In general it is preferred to 

reuse these existing measurements respectively input data, than to introduce new 

measurements and ignore already existing data. On the other hand, usually measurements are 

not always done for every VA of the process and if it is, it‟s not always done with the same 

accuracy. Thus, new measurements may also need to be introduced.  

 

To make sure existing measurements meet the necessary quality to be reused in the 

framework and to facilitate the development of new measurement processes for VAs that do 

not yet have one, two quality gates surround the framework.  

 

The first one, the measurement options model (MOM), is used to assure the quality of the 

cost and defect data. The second one, the adaptive defect classification (ADC), on the other 

hand is used to guarantee the fault classification is usable for the framework or, if it is not, to 

help develop a new fault classification which is adapted to the company and the domain the 

company is working in. 

 

The quality gates are described in section 3.5.  

 

In the define phase, the goals and resources for the application of the framework in the 

company are set. The VAMOS framework allows for a customization to reduce the effort 

that has to be spent when applying it. A typical tradeoff that has to be made is between the 

effort spent on measuring data and the accuracy of them. A company may e.g. not have the 

resources to perform a full application of VAMOS and may have to adjust it to their needs. 

Thus, VAMOS allows for reducing the measurement effort by providing different tracking 

options such as sampling the data or estimating them. Furthermore, two alternative options 

are discussed at the end of this chapter in section 3.7 which allow for a further reduction of 

the effort.  

 

The different options and alternatives therefore act like knobs on an automat that allow for 

an adjustment of VAMOS to the company‟s needs and resources. Hence, the define phase is 

a crosscut phase that adjusts these knobs in the other phases and the quality gates according 

to the goals of the company. In particular it is closely connected to the MOM and uses it to 

setup the VAMOS framework. In the following sections, a define subsection is therefore 

added to the parts of the framework where the framework allows for a parameterization to 

adjust it to the company‟s goals and needs.  

 

Since a reduction of the effort spent on the framework also results in a reduction of the 

accuracy of the data and therefore a lower reliability of the validity of the analysis and the 

change proposals, it is necessary to trade-off between a low effort and a high accuracy. 

Hence, the company applying the framework should answer the question whether the 

framework should be used to accurately quantify the problems and possible savings, or 

whether the framework should only serve as a first indicator to reveal the biggest problems. 

 

3.4 Inputs 
 

As described in the previous section, VAMOS requires defect and cost data as inputs which 

are described in the following. 
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3.4.1 Defect/effectiveness data 
 

The effectiveness data describes how many defects are found in 

a VA, hence, indicating how effective the VA is in finding 

defects. In the following, the terms effectiveness data and 

defect data are used as synonyms.  

 

The defect respectively effectiveness data need to be collected 

for each VA of the process. Furthermore, it is not sufficient to 

only track how many defects are found in each VA. As shown 

in Figure 18, the FST requires that each defect is classified 

according to the phase where it was found as well as the phase 

where it could have been found. Additionally, it is necessary to 

classify each defect according to a fault classification. 

 

To simplify the future analysis, the defect data should also contain information like e.g. the 

file name and version, to trace the defect back to the source code. 

 

3.4.2 Cost data  
 

For the further considerations of the framework, it is necessary 

to gain a more thorough understanding of the costs that occur 

when applying a VA and the simplifications and assumptions 

that were made in this framework. In [WAG06] Wagner 

proposes an analytical model for the economics of verification 

& validation activities, which serves as the basis for the further 

cost considerations within the framework.  

 

The Wagner model formulas to calculate the cost of the 

applications of VAs in relation to the number of faults found. 

The main aspect of the model is the comparison of what the 

cost would have been if they were found by the different VAs 

with the cost if the faults were found in operation.  

 

Fault propagation in the Wagner model 

 

The Wagner model considers the propagated faults separately as shown in Figure 23.  

 

 
Figure 23: Fault propagation in the Wagner model [WAG06] 

 

That means, that e.g. a fault x which was inserted in requirements and was not found in the 

corresponding requirements review might result in two faults x1 and x2 in the design 

document. Furthermore, if the design review also fails to find these two defects, they might 

propagate further to the coding phase and result in three faults x11 , x21 and x22, whereas fault 
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x11 is the fault resulting from the case that x1 was not found in the design review and x21 and 

x22 the faults because x2 was not found.  Hence, Wagner‟s model considers each 

manifestation of the fault in a software artifact as a different fault. Wagner calls the faults 

that cause further faults in later artifacts predecessors Ri. In the example, the fault x would 

therefore be the predecessor R of the fault x1; the fault x1 the predecessor R1 of the fault x11 

and so forth. 

 

Simplification 

 

This detailed differentiation of the defects is however not very useful in the context of fault-

slip through, since we want to know which defect could have been found earlier. Therefore, 

a fault found that slipped-through is considered as the same as its predecessor, but which was 

found later. Furthermore, several defects that originate from the same predecessor will be 

considered as the same defect, which however affects different parts of the artifact.  

 

The rationale behind this is, that when a fault is discovered, it is typically necessary to find 

the origin of the defect to be able to understand and fix it. Since the ECSS prescribes also 

rigourous tracing of the documents, it is further required to verify all modules that are 

affected by the changes. Thus, it is considered that whenever the origin of a defect is found, 

all other, subsequent defects of the origin defect are also found and fixed. E.g. if in the 

example the defect x21 was found, the origin x2 respectively  x is discovered and because of 

the module tracing, the subsequent defects x22, x1 and x11 are also found and fixed.  

Note, that this is just a simplification that was considered necessary and might not always 

hold true in reality. 

 

To summarize the simplifications, if a fault slipped through the requirements document as 

shown in Figure 24 and causes the design document to be wrong in two parts, it is 

considered that it is the same defect, but with two new manifestations in the design 

document. If it further slips through to the code and causes three spots in the source code to 

be corrected, it is still considered as the same fault which has now slipped through from the 

requirements to the implementation. 

 

 
Figure 24: Simplified fault propagation 

 

Costs of VA application 

 

Figure 25 illustrates the cost of the application of a VAA in the Wagner model. Basically, the 

cost consist of fixed setup costs uA and the cost to execute the activity eA(t). Furthermore, 
the cost of removing vA(t) a defect needs to be added, if the defect was found.  
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Figure 25: Breakdown of the cost in the Wagner model [WAG06] 

 

The major drawback of this approach is that the model does not describe the removal cost in 

detail and thus, gives no information on how the removal costs vA(i) are calculated and how 

regression activities are incorporated into the formula.  

 

Detailed cost structure 

 

To better understand these removal cost in the context of space applications, a more detailed 

analysis of the removal cost is necessary which is shown in Figure 26. The removal cost 

vA(i) are split up into the costs to find a defect fA(i), the costs to fix it xA(i) and in the cost of 

the regression activities rA(i). 

 

 
Figure 26: Detailed breakdown of the costs 

 

In the Wagner model, the setup costs denote mainly the cost to configure the test 

environment, while the execution cost are considered with the test execution, like e.g. 

performing reviews or running the test cases. Wagner considers that the execution time of 

the VA can be varied and therefore considers the execution cost as variable, depending on 

the length of the application, i.e. the time.  

 

Simplification 

 

In the context of space applications and the ECSS standard, this separation into setup- and 

execution cost is however not really suitable. E.g. the running of the test cases does usually 

not require a lot of time. Test cases that run several hours to days are performed 

automatically during the night or at the weekends. Furthermore, since the ECSS standard or 

the customers demand certain coverage criteria, spending a variable amount of time on a VA 

is not really possible. Therefore and for simplification reasons in the cost measurement 

process, the setup- and execution costs were combined to one cost (SEC). 

 

Additionally, the finding & fixing costs were combined as well together with the regression 

cost as the removal & regression cost (RRC). Although these costs may vary depending on 

the fault (e.g. a certain defect might be easy to find, but difficult to fix, while another one is 

very hard to detect, but easy to fix), it was deemed necessary for simplification reasons. 

Furthermore are the finding & fixing costs in practice usually measured in conjunction. 
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Figure 27 shows the new cost structure of a VA with the newly introduced SEC and the 

RRC. The SEC is the initial cost of a VA (e.g. specification and execution of test cases, 

performing the code inspection, etc.) which is the combination of the setup costs and the 

execution costs from the Wagner model. The RRC are the costs that are caused by the 

defects (i.e. finding the defects, fixing them, performing regression activities). The RRC are 

the combination of the finding & fixing costs and the regression costs from the refined 

Wagner model.  

 

 
Figure 27: Simplified cost 

 

Note that the SEC is measured for the whole VA, while the RRC is measured w.r.t. a single 

defect. Thus, the SEC build the fixed cost w.r.t. to the number of faults found within the VA, 

while the RRC build the variable cost. The SEC does therefore not change, regardless how 

many faults are found in the VA. It changes however with the size of the project. The 

variable cost on the other hand change with the amount of defects found in a VA. Since the 

RRC is measured w.r.t. one defect, the total RRC is the sum of the number of faults found 

times the RRC.  

 

Figure 28 shows this correlation between the number of faults found within an activity and 

the SEC & the total RRC. As can be seen, the total RRC increases with the numbers of faults 

found in the VA, since more time needs to be spent on finding and fixing the defects and 

performing regression testing. The SEC however stays constant, since the VA has to be set 

up and performed anyway, no matter how many defects are found. E.g. test cases have to be 

written which adds to the SEC, even if no faults are found at all.  

 

 

 
Figure 28: Correlation of SEC and RRC with the number of faults 

 

Figure 29 illustrates the two different cost types on an example of a VA. Initial tasks like 

specifying test cases and running them are considered as SEC. All other costs are incurred by 

the faults are counted as RRC. Thus, the finding & fixing of the defects and the performing 

of the necessary regression activities (such as UT, CI, etc.) are RRC. 
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Figure 29: SEC and RRC in relation to VA steps 
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3.5 Quality gates 
 

The quality gates define a mechanism to derive efficient cost & defect measurements and a 

domain-specific fault classification. Furthermore, it defines ways to evaluate existing 

measurement processes and fault classifications with respect to their suitability for the 

VAMOS framework. Hence, the quality gates serve as a filter that an existing measurement 

or data source has to pass to be allowed for usage in VAMOS.  

 

There exist two quality gates, the adaptive defect classification (ADC) and the measurement 

options model (MOM). The ADC is for evaluating respectively deriving a domain- and 

company-specific fault classification. The second quality gate, MOM, serves for evaluating 

respectively deriving the effectiveness and cost measurement processes. 

 

3.5.1  Adaptive defect classification (ADC) 
 

The fault classification plays a crucial part in all further 

analysis of the VAs at RUAG, since an inaccurate classification 

scheme may lead to data that does not reflect the process 

accordingly and incorrect conclusions might be drawn when 

trying to improve the process. Hence, an accurate classification 

scheme was needed. Freimut et al. [FRE05] point out what 

generally makes a fault classification good: 

 

 Orthogonality  

Each fault fits only into one category 

 Completeness  

Each fault can be classified into at least one category 

 Consistency  

Different analysts classify a defect into the same category 

 

Furthermore, the fault classification should only contain few classes which should be 

applicable to every phase and product, otherwise it will be difficult for the developer to 

select the correct one [CHI92].  

 

If a fault classification is already available at the company and the classification fulfills the 

required quality characteristics, it can be used for the VAMOS framework. Otherwise, a new 

fault classification has to be developed. In the following, a process is described to derive a 

fault domain-specific fault classification. 

3.5.1.1 Related work and development methodology  

 

The topic of fault classifications has been extensively discussed in literature and is still topic 

of further discussion. As shown in the next section, several fault classification schemes exist, 

which are either meant to be generally applicable or domain-specific. Furthermore, processes 

have been developed to derive fault classifications. 

 

General classifications 

 

The two most widely used fault classifications [WAG08] are the orthogonal defect 

classification (ODC) developed by IBM [CHI92] and the defect, origins, types and modes 

developed by HP [GRA92].  
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In ODC, the defects are classified according to different sets of attributes, where the most 

important ones are triggers and defect types. The triggers define the circumstances under 

which a defect emerges and the defect type refer to the type of defect according to how it 

was fixed.  

 

In the classification from Hewlett-Packard, the defects are also classified according different 

attributes (called dimensions in the Hewlett-Packard scheme). The three dimensions are 

origin, type and mode, whereas the origin is the activity in which the defect could have been 

prevented for the first time, the type is a further refinement of the origin into the area that is 

responsible for the defect and the mode indicates why the defect occurs. 

 

There is also an IEEE standard [IEE1044] which also defines a set of attributes to classify 

the defects. The IEEE standard is however not frequently used [WAG08]. 

 

Apart from these classification schemes that aim for general applicability, there also exist 

classifications tailored to specific domains. Of special interest with respect to the space 

domain and the foundations of the framework is also the fault classification developed by the 

NASA [LUT03] as well as the fault classification used in the FST by Ericsson [DAM05]. 

Both classifications are based on the previously mentioned ODC 

 

Table 8 shows a comparison of the defect type attribute aforementioned defect classification 

schemes. Note, that although the ODC, Hewlett-Packard and the IEEE scheme define 

different attributes to classify a defect, only the defect type is considered and compared. 

Other defect attributes are e.g. severity of the defect or the artifact where the defect occurred 

(design, source code, documentation, etc.). In the context of the defect analysis, the defect 

type is however the most important attribute since it defines the cause of the defect. 

  

 ODC v5.11 IEEE HP Origins, Types and 

Modes 

Faults-slip-

through 

Domain General General General Telecom 

Attribute Defect Type Type Type - 

  Assignment/Init Data handling Data handling   

  Checking     Robustness 

  Algorithm/Method Computation Computation Logic 

    Logic Logic   

    Data (Exc. Handling) Error Checking   

  Function/Class/Object   Functional Description   

      Internal module design   

  Timing/Serialization Timing problem Interprocess communication Concurrency 

  Interface/OO-

Messages 

  Module/Obj interface Internal interface 

      SW Interface 

    Interoperability HW Interface External interface 

  Relationship Subroutine mismatch     

      User interface Human interface 

    Performance   Performance 

    Standard conformance Standards   

    Document quality 

problem 

  

Table 8: Comparison of defect classification schemes 

 

Existing development processes 
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In [FRE05] a process for creating and validating a customized fault classification in an 

industrial setting is proposed. This process comprises three phases. In the initial phase the 

defect classification is created, consisting of two attributes detection and injection, i.e. where 

it was found and where it was injected. This is called defect flow model. Since the injection 

data are usually not available, Freimut et al. propose to estimate them through expert 

opinion. Based on this model, the QA-Strategy is developed, indicating which VA can find 

which defect easily or difficultly.  

 In the second phase the correction type is defined, answering the question of what was fixed 

when correcting the defect.  This is validated through interviews. The scheme is further 

refined and validated in a third phase which is an application in a pilot project. 

 

Nakamura et al. present in [NAK06] an approach to derive a defect classification from the 

change history in a source code versioning system. This approach is aimed at organizations 

that do not track defect data or where the defect data is not in a useful form to derive a defect 

classification scheme. The idea of this process is that the defects which exist in the 

intermediate versions of the source code, i.e. the versions between the initial commit and the 

final commit, are analyzed. Based on these low-level findings, a high-level defect 

classification is abstracted. This is done in an iterative fashion. First an initial set of source 

code that the analyst is already familiar with is examined. After these, code with big changes 

is selected to get further evidence. The analyst then tries to group them, and if a good 

grouping could be found, the classification scheme is abstracted from that. 

3.5.1.2 Fault classification development process 

 

Although the aforementioned fault classifications strive for general applicability, they did 

not suit the needs of RUAG without having to modify them. The development processes 

described in the previous section on the other hand have the disadvantages that they either 

rely only on a single software artifact [NAK06] or they require a lot of team involvement 

[FRE05]. Thus, a new process for creating a classification scheme was developed that 

focused on analyzing all VAs and software artifacts and requires a lower developer 

involvement. The process allows for a fault classification regarding the defect type attribute, 

as this is the most important attribute in the context of the VAMOS framework. A 

generalization of this process that considers other defect attributes is currently under 

development with the name adaptive defect classification [FEL09-2]. 

 

The process is depicted in Figure 30. It starts with the development of an initial fault 

classification which is taken from literature, since it is usually better to rely on an existing, 

proven classification scheme and adapt it to the specific domain and organization [FRE05] 

than to develop a completely new scheme. The classification is then iteratively refined by 

applying it on sample defect data in every VA. In a last step, the classification undergoes a 

quality review with the involved stakeholders (i.e. developers, testers, project managers) 

where final adjustments are made.  
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Figure 30: Fault classification development process 

 

Step 1  

 

In the first step, a proven fault classification from literature has to be taken which is similar 

to the domain of the company. The classification can already be adapted to the company 

based on previous experiences and assumptions and does not have to be very exact, since it 

is refined in the following steps anyway. 

 

Step 2.1 – 2.4 

 

The classification is now iteratively refined until the classification is assumed to be good 

enough. At first, the data source for the VA that should be analyzed is selected. This can be 

defect reports, commit comments, inspection sheets, etc. If possible, data from different 

projects should be chosen. The data (or a randomly selected subset of the data) is then 

classified using the current fault classification (i.e. the initial fault classification in the 

beginning) independently from each other by two or three persons. The results are then 

compared and any discrepancies are discussed and the fault classification is revised.  

 

These steps are performed until the quality of the classification is found to be good enough. 

A way of validating the consistency of a defect classification is presented by El Emam and 

Wieczorek [EMA98]. Thereby, a factor is calculated that represents the agreement of two 

analysts to classify the collected defects into the same group. The value of this factor can 

than indicate whether there exist an inadequate, a good or an excellent agreement and 

therefore allow to judge objectively when the classification is good enough and the quality 

review can begin. 
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Step 3 

 

In the last step, the classification is reviewed in a workshop or through questionnaires by the 

members from the team. 

 

3.5.2 Measurement options model (MOM) 
 

The role of the measurement options model is to guide industry 

to find a way to measure the effectiveness and cost data and to 

ensure that the measurements are as simple as possible and 

require a minimal effort. 

 

The data can usually be measured in different ways. The cost 

data can e.g. be measured using a simple spreadsheet, in which 

the developer periodically enters the time spent on each task. 

Another option could be to install a tool on the developer‟s 

computer that tracks how much time was spent on each tool. A 

third option could be a web-based work tracking tool where the 

developer also enters periodically his work information. Hence, different options, in the 

following called measurement options, exist to measure the required data.  

 

The measurement options model is therefore a means to get the best possible option in terms 

of effort and accuracy to measure the cost or effectiveness data.  

3.5.2.1 Quality characteristics 

 

The measurement options vary among each other in the three quality characteristics variable 

effort, fixed effort and accuracy as described in Table 9. 

 

Variable effort The effort (in working-time) that a developer has to spend when logging 

the effectiveness, RRC or SEC information. E.g. it might take the 

developer 30 minutes to enter a newly found defect into a defect reporting 

system.   

Fixed effort An initial investment (in working-time or a monetary value) that has to be 

spent upon introducing the measurement. E.g. a defect reporting tool needs 

to be purchased and installed and the developers have to be trained in it.  

Accuracy Different measurements record the data with different accuracy. E.g. if a 

measurement requires the defect reporting to be done after the project or 

test campaign, the accuracy of this measurement will be lower, since it is 

more difficult to classify a defect a posteriori. This is due to the fact that 

the person classifying the defect has to reread the code and understand the 

origin of the defect and the way it was fixed. This makes it very likely that 

mistakes creep into the classification. The accuracy of a measurement 

option will on the other hand be high if the defect is classified directly 

after it is found and fixed.  

The accuracy furthermore depends on the way the information is recorded 

and the sampling size.  

Table 9: Quality attributes of effectiveness measurement options 
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Since the options differ among each other and even within the VA they are used in, a general 

recommendation of which measurement should be used in each VA would be desirable.  

This is however not useful for the following reasons: 

 

 

Differences in the VAs 

 

Different companies use different VAs. E.g. one company does perform a code inspection, 

while another doesn‟t, but does e.g. model checking instead. Furthermore do companies use 

VAs differently. A company might e.g. perform its unit test using a test tool, while another 

one does it manually. A recommendation to automatically log the defects by the tool with the 

developer only having to classify it afterwards would therefore not be useful for the 

company that does its unit testing manually. A general list would therefore need to comprise 

all possible VAs in all possible variants which is not realistic.  

 

Differences in the intensions and possibilities 

 

Furthermore, companies have different intensions and possibilities. A company might e.g. 

want to spend more variable effort on a measurement to obtain the maximum accuracy.  

 

Measurement options need to be clearly specified 

 

To understand how a measurement should be introduced and used, it is necessary to clearly 

specify the measurement. This however makes it very specific and adapted to a company, 

and thus contradicts with the idea of a generally applicable measurement recommendation. 

 

Due to these reasons, no concrete recommendations are given on how to measure the defect 

data in each VA. But instead a process is described in the following which allows the 

company to obtain a suitable cost and defect measurement for each VA. 

  

It is further divided into the defect measurement options (MOM-DEMO) for the defect and 

RRC data, and the setup and execution cost measurement options model (MOM-SECMO) 

for the SEC data. 

3.5.2.2 Defect measurement options (MOM-DEMO) 

 

Figure 31 shows the measurement options model for defect data (MOM-DEMO). The 

process begins with the question whether a measurement for the VA under consideration 

already exists or not. If a measurement process already exists, the left path with the steps 1.1 

– 1.3 has to be followed to assure that the existing measurement fulfills the quality 

requirements. Otherwise the right path with the steps 2.1 – 2.6 has to be followed to create a 

new measurement process for this particular VA. 

 

Steps 1.1 and 1.2 

 

If a measurement process already exists for the VA, the next step is to check whether the 

quality is acceptable for the use in the VAMOS framework. This means that the following 

questions need to be answered: 

 

 Is the defect logged with information to trace it back to the software artifact where it 

appears, e.g. the part of the source code or design or the paragraph in the 

documentation? 

 Is the defect classified with the information where it could have been found and 

where it actually was found?  
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 Is the defect classified using the fault classification? 

 

If these questions can be answered and the measurement contains all the necessary 

information, the next step is to assure that the information is also accurate. This step can be 

left out if it is decided to keep the existing measurement process in order to reduce effort at 

the expense of accuracy. 

 

If both, the quality and the accuracy are acceptable, the process proceeds with the analysis of 

the RRC measurement (step 1.3); otherwise the measurement process has to be newly 

created by starting with step 2.1. 

  

Step 1.3 

 

Additionally to the defect data, the RRC have to be measured. If the RRC are not yet 

measured along with the defect reporting, an RRC measurement has to be developed and 

introduced. This step is as simple as define possible ways of measuring the RRC cost besides 

the existing defect measurement and select the best option in terms of effort or accuracy. 

 

Step 2.1 

 

At first, for each VA that does not have an adequate measurement process, a list of possible 

ways of measuring the defects has to be developed (measurement options catalog). This can 

be done in a brainstorming meeting with developers involved in the VAs.  

As described in the previous section, a general recommendation on how to measure is not 

useful. In the following, a list of with typical measurement options is given as, which serves 

as an initial catalog and starting point and can be evolved by the company. Further ideas on 

the measurement options can be found in the case study (see section 4.3.2.1).  

 

Introduction of a bug tracker 

 

The effectiveness and cost data can be measured with a bug tracker such as the commonly 

used Bugzilla [BUG09].  

 

Reuse of the existing infrastructure 

 

If a defect reporting system already exists in the company it may be possible to reuse and 

modify it in such a way that it supports the tracking of the necessary information. 

 

Modify the versioning system 

 

If a source code versioning system is used it might be adapted to incorporate the 

measurement whenever a developer commits a bug fix. This might be done e.g. by providing 

a comment template where the developer has to fill in the required information. 

 

Spreadsheet 

 

A very simple way of measuring defect data is to provide a spreadsheet in which the 

developer enters the defect information.   

 

Modify the test tool 

 

If a test tool is used, it may be possible to modify it to automatically log any defect found. 

The defect classification and cost measurement might be done by providing a popup when a 

test case fails or by filling out a template in the stored test logs. 
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Step 2.2a and 2.2b 

 

When enough options to measure the defect data have been gathered they need to be 

attributed with their variable effort, their fixed effort as well as the accuracy. This can be 

done by listing all measurement options in a matrix with columns for variable effort, fixed 

effort and accuracy. 

 

Define - Sampling  

 

Since some activities can find quite a large amount of faults, it is important to consider 

whether all defect data should be collected and classified or not. If e.g. an activity which is 

performed early-on finds thousands of (minor) faults, it might neither be desired nor 

necessary to measure all the defects. Thus, a possibility to reduce the measurement effort is 

to introduce sampling and hence to only report a certain percentage of the defects (e.g. every 

10
th
 defect).  

 

The usage of sampling can however have a significant impact on the fixed effort (e.g. if the 

introduction of sampling requires a modification of the test tool). Therefore it should be 

decided in advance on how the measurement is performed and the fixed effort for each 

option should be rated with this in mind. 

 

Step 2.3 

 

As in Step 1.3, the RRC data has to be measured along with the defect data. Therefore, for 

each possible measurement option from the list, it has to be decided on how the RRC can be 

measured using this options. E.g. an existing bug tracker might already include a field to 

specify the costs that were spent on finding & fixing the defect. Therefore this option does 

not require a separate measurement of the RRC, but is rather integrated already. If the RRC 

cost cannot be logged directly with the option, e.g. if the bug tracker does not support a cost 

field, then another way to measure the RRC has to be defined. 

 

The measurement of the RRC adds to the effort of the defect measurement option. 

Considering the example of the bug tracker that does not support a cost field, a way of 

measuring the RRC could be to store the cost data separately in a spread sheet. This however 

would require the developer to switch between applications when classifying the defect and 

thus, increase variable effort (since it takes longer) and decrease accuracy (since the 

developer might forget to track the RRC in the spreadsheet). Hence, for each measurement 

option in the matrix, the way of measuring the RRC needs to be defined and the attributes of 

the option needs to be updated. 

 

Define – RRC measurement 

 

The RRC measurement per fault type may be left out if the alternative framework options are 

followed, which are described in the end of this chapter (see section 3.7).  

 

Step 2.4 – 2.6 

 

When the matrix has been updated accordingly it can be sorted to retrieve the best 

measurement option. The sorting is done first by variable effort, then second by the accuracy 

and third by the fixed effort. The rationale behind this order is that the most important aspect 

is that the variable effort, i.e. the effort to measure each defect, is rather low to minimize the 

time the developer has to spend on defect reporting and to avoid too much distraction from 

his actual work. Furthermore the accuracy is rated higher than the fixed effort, since it is 

more important to have accurate data than to have a low initial investment. This is because 

inaccurate data which is used for analysis might lead to incorrect conclusions and thus, 
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wrong improvements of the processes. Although the fixed effort of a measurement option is 

important as well, it is usually considered the case that a process improvement program lasts 

for several years and thus the investment will amortize over time.  

 

Depending on the goals of the company, this order can be changed. A company might e.g. 

want to invest more variable effort for achieving a higher accuracy.  

 

When the best measurement option has been chosen, the process is finished and the 

measurement option needs to be implemented in the company and the employees need to be 

trained in how to measure the defects. 

 

If sampling was chosen in the step 2.2, it is also important to find out the right sampling rate 

to get enough data for performing a meaningful analysis (step 2.5). This can be done by 

implementing the measurement process in a pilot project and evaluate if enough defects are 

reported.  
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Figure 31: Defect Measurement Options (MOM-DEMO) 
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3.5.2.3 Setup and execution cost measurement options model (SECMO) 

 

The measurements for the SEC are developed using a similar model to MOM-DEMO and is 

illustrated in Figure 32. Depending on whether a measurement process already exists for the 

VA under consideration the quality of the measurement is analyzed (steps 1.1 and 1.2 in the 

left path) or a new measurement is developed (steps 2.1 – 2.4 in the right path).   

 

Steps 1.1 and 1.2 

 

The quality requirements for the SEC measurement are that the SEC is measured without 

including any RRC data, i.e. no finding & fixing cost and no regression cost. Thus, the 

following questions need to be answered: 

 

 Is only the SEC data measured, i.e. only initial cost spent on setting up the test 

environment and performing the activity?  

 Are costs spent on performing regression activity excluded from the SEC? 

  

If the quality requirements are met, an accuracy analysis might follow to assure that the cost 

data is measured accurately enough. This means that no big variances exist in the 

measurements and it is clear for every person involved what is in- and what excluded in the 

SEC measurement. 

 

If the quality requirements are fulfilled and the necessary accuracy is given, the 

measurement can be used for VAMOS. Otherwise the steps 2.1 – 2.4 have to be followed to 

create the measurement. 

 

Step 2.1 

 

As with MOM-DEMO, a measurement options catalog has to be developed containing 

different ways of measuring the SEC data for the specific VA.  Again, giving a general list is 

not useful and therefore only some typical options are described. 

 

Reuse of the existing infrastructure 

 

Usually companies have some means to perform a work tracking. This may be used to track 

the SEC data.  

 

Spreadsheet 

 

A very simple way of measuring the SEC data is to provide a spreadsheet in which the 

developer has to fill in the time spent on doing setup & execution activities.    

 

Step 2.2 

 

The measurement options have then to be rated according to their variable effort, their fixed 

effort and their accuracy.  

 

Step 2.4 

 

In the end the rated measurement options are sorted by variable effort, then by accuracy and 

last by fixed effort with the same rationale as in MOM-DEMO. The process then finishes by 

selecting the best option and introducing the measurement in the company. 
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Figure 32: Setup & Execution Cost Measurement Options (MOM-SECMO) 

 

3.6 Process Steps 
 

3.6.1 Measure 
 

In the first step of the framework application, the measurements are 

carried out in order to obtain the data to be used in the analysis. As 

described in section 3.4, the necessary inputs for the framework are 

the effectiveness data, the setup & execution cost as well as the 

removal & regression cost.  

 

The measurement process is divided into the measurement of the SEC 

data and the measurement of the effectiveness data, which also 

includes the collecting of the RRC data.  

3.6.1.1 SEC measurement 

 

Figure 33 shows the basic concept of the setup & execution cost measurement process. 
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Figure 33: SEC measurement process 

 

After the code has been developed, it is going to be tested within several VAs before it can 

be finalized and delivered to the customer.  

 

The basic procedure of each VA is:  

 

1. Preparation 

2. Execution 

3. Finding & fixing defects 

4. Perform regression testing 

 

Before the VA can be performed, usually some preparative tasks at the beginning of each 

VA have to be carried out. Since these tasks count as setup & execution cost, they have to be 

tracked during or after completion of the preparation. Example tasks are: 

 

 Preparation of testing hardware 

 Writing test cases and test scripts 

 Preparation of code inspection templates 

 

After the preparation has been finished and all related costs have been tracked, the next step 

is the execution. This means basically any task that have to be carried out to fulfill the VA. 

Example tasks are:  

 

 Executing the test cases 

 Perform the (first) design review 

 Perform the (first) code inspection 

 

This execution cost also count as SEC and therefore have to be tracked as well.  

 

After this first initial execution of the VA the finding & fixing of the defects begins. The bug 

fixing goes along with performing regression activities. The cost of the defect fixing and the 

accompanying regression activities are measured in the effectiveness measurement process 

described in section 3.6.1.2. 

 

All further time spent on the VA is considered as removal & regression cost, and thus, the 

SEC measurement continues with the next VA. 
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Define – Tracking options 

 

The standard way of tracking the SEC information is that every person performing a 

preparation or VA execution-task records the time spent on it. Measuring all the cost may 

however be too much effort for the company and therefore two options exist to reduce this 

effort.  

 

Sampling 

 

Instead of measuring all the cost, only a sample, i.e. a subset, can be used.  

 

Estimation 

 

A further reduction of measurement effort can be achieved by simply doing an expert 

estimation on the SEC data.  

3.6.1.2 Effectiveness and RRC measurement 

 

The measurement process for the effectiveness and RRC data is outlined in Figure 34. 

 

 
Figure 34: Effectiveness and RRC measurement process 

 

The process begins with the detection of a defect through a failed test case, a code inspection 

annotation or the like. The defect is then found & fixed and the hours spent have to be 

attributed to the RRC.  

 

The defect then needs to be classified according to  

 

 its fault type 

 the phase where it was found  

 the phase where it could have been found 

 

Additional information has to be collected to allow tracing the defect to the source code or 

design.  
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Depending on the measurement option for the VA (see section 3.5.2.2), the classification of 

the defect may also be done a posteriori, i.e. after the VA or the project has been completed. 

Furthermore, the measurement option may support automatic tracking of the phase found 

and the file information.  

 

After the defect has been fixed and classified, the regression activities have to be carried out. 

The time spent on the regression activities have also to be added to the RRC data. 

 

Define – Tracking options 

 

The removal & regression cost for a defect have to be tracked by every person involved. 

That means, that the person finding the bug, the person fixing the bug, as well as any person 

involved in performing regression testing need to attribute the time they spent on it to the 

RRC.  

 

Similar to the SEC measurement options exist to reduce the measurement effort.  

 

Sampling 

 

If the measurement option does not yet prescribe a sampling for the defect measurement, the 

RRC tracking may be sampled separately. Thus, although every defect is measured, the RRC 

is not tracked for every defect but only for a subset of them. 

  

Estimation 

 

Instead of that every person that is involved in the defect fixing & regression testing adds the 

time to the RRC; another option is to estimate the RRC that the defect will cause. Thus, the 

person fixing the bug will estimate the RRC of all persons involved. 

 

Although this reduces the accuracy of the measurement, it may be useful for simple faults 

where estimation may be performed with a high accuracy and an extensive RRC tracking 

would cause unnecessary effort. Estimation may also be more appropriate for later activities 

when several people are involved in the defect fixing and regression testing, since there, the 

tracking becomes more and more complicated and therefore less accurate.  

 

A further problem with measurement occurs when bug fixing or regression testing is 

performed in batches, which means that several defects are fixed at once or the regression 

testing is done for multiple defects. Hence, an accurate measurement may be not possible or 

very difficult, and therefore estimating the RRC may be an alternative. 

 

3.6.2 Analyze 
 

The goal of the analysis phase is to use the measured data to find out 

in which VA problems exist and what the problems are. In particular, 

the following questions shall be answered: 

 

1. Which activity does not find the faults it is supposed to find? 

2. In which activity could a change pay off? 

3. Do different VAs find the same type of faults, i.e. is there an 

overlap in the VAs? 

 

The analysis phase consists of two parts, the calculation of the improvement potential (IP) 

and the calculation of an overlap factor (OF). The IP allows to answer the first two questions 

while the OF answers the third. 
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3.6.2.1 Data preparation 

 

Effectiveness data 

 

At first, the measured defect data has to be grouped according to the VA they slipped 

through and the VA they were found in. This can be done in a table where the VAs where 

the defects are found are on the x-axis and the VAs where the defects could have been found 

are on the y-axis. Table 10 shows such a table filled with fictitious data. E.g. in the CI 

column, one can see that 5 faults that were found in CI could have already been found in RR, 

10 faults already in DR and 2 faults in UT. Furthermore CI found 40 faults that could have 

only been found in CI. 

 

 DR UT CI I-IT I-VT-TS F-IT F-VT-TS VT-RB AR 

RR 4 0 5 3 1 0 0 0 0 

DR 20 1 10 30 5 4 1 1 2 

UT  3 2 0 0 0 0 0 0 

CI   40 5 2 1 0 0 4 

I-IT    47 20 5 10 5 3 

I-VT-

TS     5 0 5 2 0 

Σ 24 4 57 85 33 10 16 8 9 

Table 10: Example of effectiveness data 

 

Note that in contrast to the Damm model, this table has to be created for each fault type and 

filled only with the defect data of the corresponding fault type.  

 

Cost data 

 

Similar to the effectiveness data, the cost data has to be grouped according to the VA.  

Table 11 shows an example of the measured cost data grouped to the VA. Note that the RRC 

data has to be also split according to the fault type, which is not shown in this example.  

 

 RR DR UT CI I-IT 

I-

VT-

TS 

F-

IT 

F-

VT-

TS 

VT-

RB AR Operation 

SEC 10 30 50 70 40 80 10 20 10 0 0 

RRC 5 1 2 2 5 8 40 60 80 100 150 

Table 11: Example of cost data 

3.6.2.2 Improvement potential 

 

The improvement potential (IP) indicates the possible savings due to a removed fault slip 

through. The IP is calculated for a VAy with respect to the faults that slipped through to the 

later VAx. Thus, the IP indicates how much hours could be saved if the faults where found 

already in VAy. According to Damm [DAM06], the IP is calculated as follows:  
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The IP is the difference of what the faults cost if they are found in VAx and what the fault 

cost could have been if they were already found in VAy. Hence, a positive IP value denotes 

the time that can be saved if the faults are found in VAy.  

 

To gain the total IP of a VAy, i.e. the time that could be saved if no faults slipped through 

VAy, the sum of all IPs has to be taken: 

 

 

In contrast to the model of Damm, the IP is here calculated separately for each fault type FTt 

to overcome the drawback indicated in section 3.2.2.2. 

 

The total IP has to be calculated for each VAy and each fault type FTt. Finally, the highest IP 

indicates the VA with respect to the fault type where an improvement will return the biggest 

benefit.   

 

Table 12 shows the improvement potentials for the different VAs calculated from the 

example data of the previous section. The table contains the IPs of each phase with respect to 

the phase where the faults could have been found (on the y-axis). The total improvement 

potentials in the rightmost column are the calculated sums of the IP of each row. 

 

IP DR UT CI I-IT I-VT-TS IT VT-TS 

VT-

RB AR IP/VA 

RR -16 0 -15 0 3 0 0 0 0 -28 

DR  1 10 120 35 156 59 79 198 658 

UT   0 0 0 0 0 0 0 0 

CI    15 12 38 0 0 392 457 

I-IT     60 175 550 375 285 1445 

I-VT-TS      0 260 144 0 404 

Table 12: Example improvement potentials 

 

The example table shows, that the three highest improvement potentials (marked in grey) are 

in the informal integration test (1445), the design review (658) and the code inspection 

(457). Hence, an improvement of these VAs will pay off most and are the ones that should 

be considered for the improvement phase. 

3.6.2.3 Overlap factor (OF) 

 

The overlap factor (OF) gives answer to the question if an overlap exists between two VAs 

and if removing the VA would save cost. It is calculated as the difference between what the 

current costs of an activity VAx are and what the cost would have been if the activity was 

removed and the faults were found later instead.  

 

The VA does not necessarily have to be removed completely. It may also be possible to 

remove the VA only for a certain fault type. This means, that test cases or testing procedures 

to find this fault type may be removed, if the VA is inefficient in finding this defect type 

anyway. 
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Since it is usually not recommendable to remove a VA if it is effective in finding defects, it 

only makes sense to calculate the overlap factor for VAs that find very few faults. 

Furthermore, if the IP is high for the VA, it should be tried to improve the VA instead of 

removing it. In essence, the OF is only calculated for VAs that find few faults and have a 

low IP. 

 

The overlap factor OF is now calculated as the difference of the current fault distribution and 

the estimated fault distribution if the VA was removed and the faults were found in later 

activities:  

 

The overlap factor is calculated as follows: 

 

 
 

Where the function FF(x) denotes the number of faults found in VAx and p(x,j) defines the 

probability that VAj finds the fault that was previously found by VAx. 

 

The current costs of the VA are calculated as the sum of the current SEC of the VA and the 

number of faults found in the VA times the RRC. The future cost are the new SEC (i.e. a 

reduced SEC if the VA is not completely removed or 0 if the VA is removed) plus the sum 

over the fault cost as they will be if they are found in the later activities. This is calculated by 

the total number of faults found in VAx times the probability that a later VAj will find it 

times the RRC of this VAj.  

 

Since this probability function in reality does not exist, it has to be estimated how many of 

the faults that were previously found in VAx are now found in VAj. 

 

The formula can be simplified as follows: 

 

 
 

Hence, the OF is the difference in the SEC, i.e. the gain from the removed SEC, and the cost 

incurred by the new fault distribution, i.e. the loss because the faults are found later which in 

general tends to be more expensive.  

 

If the overlap factor is positive, it means that removing the activity will result in saved costs, 

since too few faults are found and the VA cost too much. 

 

To exemplify the usage of  the OF it is calculated for the defect data from Table 10 for the 

UT which only finds very few faults (4). Let‟s assume these are interface faults and the test 

cases for testing these types of defects should be removed and would save 20 working hours. 

As a next step, the new fault distribution has to be estimated, which is illustrated in Table 13. 

The UT finds now four faults less, since it was removed and cannot find these faults 

anymore, and they were estimated to be found in CI (1), I-IT (2) and I-VT-TS (1). 

Considering the RRC data from Table 11, the result of the calculation of the OF is 8h. This 

means, that by removing the UT, 8h can be saved. 
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RR DR UT CI I-IT I-VT-TS IT VT-TS VT-RB AR Operation 

- - -4 1 2 1 0 0 0 0 0 

Table 13: Example difference in fault distribution 

 

Although several calculations are made on larger set of data, the analysis can still be 

performed easily by implementing the calculations in a spreadsheet or small program.  

 

3.6.3 Improve 
 

The task of the improvement phase is to develop and evaluate 

appropriate changes for the VAs that were previously selected in the 

analysis phase. Hence, change proposals (CP) are developed to 

improve the VAs with a high IP or a positive OF. 

 

In a first step, the root cause of the problems in the VA is analyzed 

and changes are developed to overcome these problems. In a second 

step, the benefits of the CPs are calculated to be able to make 

quantifiable decisions on which of the CPs should be implemented. 

Finally, appropriate change proposals are selected.  

3.6.3.1 Fault grouping 

 

The VAs that were selected in the previous phase, i.e. the ones with the highest IPs, are 

further analyzed to identify the problems. This can be the VAs where the IP exceeds a 

certain threshold or e.g. the VAs with the three highest IPs.  

 

The root cause is identified by analyzing the faults that slipped through the VA. Figure 35 

shows an example analysis for a VA1 where the faults have slipped through to VA3. As seen 

in Table 10, this data already exist from the measurement phase. Note that since the IP is 

considered per fault type, the chosen defects are already of the same type.  
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Figure 35: Sub-grouping of defect data 

 

In a next step, these defects are then further grouped into different subsets according to 

similarities among the defects. This is done by taking a closer a look at the changes made in 

the code, design or documentation. The sub-grouping is performed since it is usually difficult 

to derive improvements solely from the information of the fault type and the VA where the 

fault could have been found.  

3.6.3.2 Root-cause analysis and development of change proposals (CP) 

 

In the last step, change proposals are generated for each of the subgroups. Since the fault 

type, phase found and phase could have been found are known for the selected defects and 

the faults were further refined into subgroups according to similarities, enough information 

about the defects and the problems in the VA is known to draw conclusions and define CPs. 

The development of the CPs can be done in a brainstorm meeting with experts of the VA. 

The central question that should be answered in this meeting is how the VA needs to be 

changed to find these faults that slipped through. Examples of change proposals are: 

 

 Introduction of new (testing) tools 

 New check list items in the code inspection sheet 

 Modified coverage criteria 

 Changed test case selection procedures 

 

Note that although a CP is defined for a specific VA and a specific fault type, the CP can still 

have an influence on the other VAs or fault types. 

 

Alternatives 

 

The root-cause analysis described in this section, i.e. taking a small group of faults that 

coincide in phase “found”, phase “could have been found” and fault type and performing a 

second grouping regarding further similarities, is an easy way to find out the problem and 

derive change proposals. There exist however more root-cause analysis methods in literature 
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[AND06]. Examples are the method of 5 whys and the cause-and-effect chart. In 5 whys, the 

root cause of the problem is derived by constantly asking why to the problem and thus 

getting to a deeper understanding of it. In the cause-and-effect chart, starting from the 

problem and its effect, the causes are derived and grouped. Thus, the root-cause analysis 

described in this section may be replaced by another method if needed. 

3.6.3.3 Impact analysis 

 

In the impact analysis, the possible benefits of the change proposals are evaluated and 

quantified. Since not all change proposals have the same benefit and achieve 100% of the 

improvement potential. Furthermore, it may appear that a change proposal has a large benefit 

although in reality, it does not. Thus, only the change proposals that actually bring a benefit 

should be implemented. Another reason is that different change proposals for different VAs 

or fault types may be contradictive; hence, the quantification can help to choose the right CP. 

 

The benefit of the change proposal is calculated through an improvement gain, which 

indicates the possible savings that can achieved if the change proposal is implemented. To 

better understand the origin of the improvement gain, a closer look at the calculation of costs 

is necessary.  

 

Calculation of costs 

 

As mentioned in 3.2.2.3, the model by Wagner [WAG06] serves as the basis for the cost 

considerations. Thus, the cost calculations of the Wagner model are described in more detail 

in the following and the simplifications made to include the cost calculations into the 

VAMOS framework. 

 

Wagner denotes the function θA(i,tA) as the probability that the VAA does not find the defect i 

within an application time tA. Hence, 1- θA(i,tA) is the probability that VAA finds the defect i 

within the time tA.   

Thus, the direct cost for a VA, i.e. the cost that can be directly measured, are calculated in the 

Wagner model as the sum of the setup and execution cost plus the sum over all faults times 

the removal costs: 

 

 
 

The direct cost of all VAs is calculated according to Wagner as  

 

 
 

Whereas the term  

 

 
 

defines the probability that the defect i is found in VA x and was not found in any earlier VA 

nor was any of its predecessors found earlier.  Since we only consider the cost of a defect in 

the phase where it was actually found, none of the earlier VAs could have found it, thus: 
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Additionally, with the simplification made in section 3.4.2, the predecessors are not 

considered as separate faults and therefore, if the fault i was found in VAx, no predecessor 

could have been found earlier, hence: 

 

 
 

With the simplification that ux + ex(tx) are grouped together as the setup and execution cost 

SECx and the removal cost vx(i) are replaced with the regression and removal cost RRCx, the 

direct costs over all VAs are calculated as 

 

 
 

Since in our approach an a posteriori analysis is done rather than an a priori, the probability 

function 1- θA(i,tA) is not necessary. Instead, it is possible to use the relative amount of faults 

found in the VAx. Thus we introduce the function FF(x), which denotes the number of faults 

found in the VA. Therefore, the direct costs are calculated as follows: 

 

 
 

The function FF can be further refined to the function FF,j(x) which denotes the number of 

faults found in VAx of fault type FTj. The formula has to be modified then by adding a sum 

over all defect types j. The direct cost is then calculated as follows: 

 

 
 

 

Change estimation and improvement gain 

 

The improvement gain (IG) of a change proposal assesses the cost (in working hours) that is 

saved if the chosen CP is implemented. It is computed by subtracting the current direct cost 

from the direct cost as they will be in the future.  

 

The current costs are calculated as described in the previous section, by accumulating the 

SEC of all activities and by summing up the fault cost. Hence, the data from the measure 

phase are used to calculate the current costs.  

 

 
 

Since the future costs are not known, it is necessary to estimate the required data. Thus, for 

each VA it has to be estimated how the SEC, the fault distribution and the RRC will change 

after implementing the CP. The future cost is calculated equally to the current cost, but by 

using the estimated data instead of the measured. 
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The improvement gain can then be calculated by subtracting the future from the current cost.   

 

 
 

It is clear, that if the current costs are higher than the future costs, i.e. the IG is positive, the 

CP will save working hours and should therefore be implemented.  

 

Since estimating the SEC for each VA and the fault distribution and RRC for each fault type 

and each VA would require a large effort and greatly increase the uncertainty, several 

simplifications are made in the following to facilitate the estimation process. 

 

By rearranging the summands and considering the current and the future RRC as equally, the 

formula can be simplified as shown below.  

 

 

 

 
 

 

As can be seen, the IG is now calculated by the difference between the current and the 

estimated SEC plus the difference in the fault cost. Through the combination of the RRC, it 

is now only necessary to estimate the difference in the fault distribution which is then 

multiplied by the measured RRC.  

 

The simplification to combine the RRC is made, as it is assumed that the RRC do not change 

upon introduction of a change proposal. The rationale behind this is that a CP mostly affects 

the SEC of a VA and the fault distribution, but does neither change the cost to remove a 

defect in a VA nor the regression cost. Note however, that this simplification holds only true 

on the supposition that the change proposal has no or very little influence on the RRC of 

VAx. 

 

A further simplification can be made, if we assume that a CP only modifies one VA and has 

only influence on one fault type. This simplification can be made, since a CP is usually 

developed only for a single VA and any influence on another fault type will only be positive 

in the sense that at the most more faults are found of another fault type because of the change 

proposal. Thus, a conservative calculation is made, meaning that at most the estimation of 

the gain will be too low. 

 

To summarize these simplifications, the difference in the faults found is 0 for every fault 

type that is not affected by the CP:  

 

 
 

Furthermore, the difference in the SEC also evaluates to 0 for every VA that is not affected 

by the CP: 
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Hence, with the simplifications made the IG is calculated as follows: 

 

 
 

This means, that it is only necessary to estimate the difference in the setup and execution 

cost for the VA that is changed by the CP and the difference in the fault distribution for the 

fault type t that the CP shall address. 

 

Using the example of the previous section, the usage of the IG is exemplified on a fictitious 

CP for the activity I-IT, which had the highest IP in the analysis. The CP could be to increase 

the coverage in the test cases of I-IT to better find interface faults. The cost for these 

additional test cases are 10h, thus the future SEC is 50. 

 

Table 14 shows the estimated change in the fault distribution. It is assumed that the I-IT will 

find now 20 faults more that were previously found in later activities. Therefore, the later 

activities (I-VT-TS, F-IT, F-VT-TS and AR) find now fewer faults. 

 

RR DR UT CI I-IT I-VT-TS IT VT-TS VT-RB AR Operation 

- - - - 20 -10 -3 -6 0 -1 0 

Table 14: Example estimation of the changed fault distribution 

 

The calculation of the improvement gain results in 550 hours. This means, that upon 

introduction of the change proposal, 550 hours can be saved. 

 

3.6.3.4 Define - Selection of change proposal 

 

When the improvement gains have been calculated for all CPs that were developed, it is now 

necessary to select the CPs which shall be implemented. If the CPs are orthogonal in the 

sense that they only influence one defect class, several of them may be implemented. 

 

Basically, the CPs with a high improvement gain should be implemented, i.e. the CP with the 

highest overall savings. Since a change proposal may however require a significant 

investment (acquisition of tools, training of developers, etc.) it may not always be the best 

option to go for the CP with the highest IG.  

 

Return on investment 

 

Another way to evaluate the CPs that incorporates the investments that have to be made is to 

calculate the return on investment (ROI). The ROI computes the amount of money returned 

from an investment and is defined as follows [RIC04]:  

 

 
 

The benefit can be derived from the improvement gain. Since the IG is however calculated in 

working hours, it needs to be transformed to a monetary value by multiplying the IG with the 

average cost of one working hour. Further, intangible benefits as e.g. reduced time to market, 
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may be added as well. The investment is every cost that the introduction of the CP will 

cause, except for higher SEC in the VAs as this is already included in the IG.  

 

Thus, the ROI is a useful way to decide on which CP should be implemented with respect to 

the investment that has to be made. Furthermore, it is usually not necessary that the ROI is 

100% accurate, but enough to know if it is positive, break-even or negative to make a useful 

decision [SOL04]. 

 

Lowest investment 

 

Another alternative is to go for the lowest investments. This may be interesting for 

companies that cannot spend a lot of resources on improving the processes. 

 

Apart from the selection of the CP with the highest IG, it should be considered if phases that 

have a positive overlap factor can be removed. Thus, if the OF for a certain VA is high, it 

should be considered to remove this VA. As described in section 3.6.2.3, it may also be 

possible to just remove the VA for a single defect type. Thus the CP would be to adapt the 

VA (e.g. removing test cases, modifying the code inspection sheet, etc.) so that the VA does 

not try to find these defect types anymore. 

 

3.6.4 Implement 
 

In the last step of the framework, the selected change proposals need 

to be implemented. Since the CPs can be very different in their nature, 

it is not possible to give a general guideline on the implementation of 

them. The following questions about processes, tools and people can 

however help to implement the chosen change proposal. 

 

Process 

 

 How does the process need to be changed? Does the workflow or the order of tasks 

within a VA have to be changed? 

 Which process documents need to be adapted? 

 

Tools 

 

 Which tools are required? Do new tools have to be bought or can existing tools be 

modified and reused? 

 

People 

 

 Which trainings are necessary to teach the developers in the changes made?  

 Do new people with special skills have to be hired? 

 

3.7 Alternative options 
 

The framework allows for a parameterization to adjust the required effort that the company 

has to spend on applying the framework. It may however be necessary to further reduce this 

effort, if a company has very low resources. Thus two variations of the framework exist 

which require even lower effort. 
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3.7.1.1 Alternative 1 – No RRC measurement per fault type 

 

The first alternative removes the RRC measurement per fault type. This means that the RRC 

is measured for the whole VA and is then divided by the number of faults found in the VA. 

The advantage of this is that the tracking of the RRC can be greatly simplified, as all cost 

spent in one VA (except for the initial SEC) can be assigned directly to the RRC. The 

disadvantage is that the reliability of the analysis is significantly decreased, since the cost for 

the different defect types are not accurate. 

3.7.1.2 Alternative 2 – No fault types  

 

A further effort reduction can be achieved by removing the fault types. This option may be 

useful if the company does not have a fault classification and does not want to create one. By 

removing the fault classification, the developers do not have to classify the defects and also 

do not have to track the RRC per fault type as in the first alternative. This option is therefore 

the basic FST introduced by Damm [DAM06].  

 

The option has the lowest effort, but also the lowest analysis quality. Additionally, the 

overlap factor is not useful for this option, since no overlap can exist between different 

activities because no defect types exist.  
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4 CASE STUDY AT RUAG 
 

4.1 Analyzed projects 
 

Four projects were considered for this case study and are described in the following. Other 

projects were not considered since they were either not typical projects or were developed 

using different software processes and thus are not representative for the study respectively 

for any process improvement recommendations. 

 

Project A  

 

Project A was a small project with about 50k source lines of code (SLOC) and therefore very 

typical for the software produced at RUAG. The project was also typical for the current 

software processes, since it was completed in 2008 and the processes haven‟t changed much 

since then.  

 

Project B 

 

Project B was a rather big project with about 180k SLOC. It was developed under a tight 

schedule and under a modified software process using early prototyping. Therefore it is a 

rather untypical project for RUAG, but was taken into consideration for this case study since 

it contains a larger amount of defect data; in particular software problem reports (SPRs). 

 

Project C 

 

The last project that was taken into account for this study was another small project which 

was still under development under the time of writing this report. Because of this the project 

was chosen as a representative of the current software development process.  

 

Project D 

 

A forth project was only taken into account for the development of the fault classification. It 

contains about 300 SPRs which are representative for more complex faults that are usually 

found in later stages. It was however excluded from the further process analysis since it was 

already finished in 2002 and the processes that were used back then differ very much from 

the current processes. Improvement recommendations derived from this data would therefore 

not have been applicable to the current software processes and thus not be of value. 

 

Note that all projects comprise also a generic boot component which accounts for about 10k 

LOC. Since this component is usually only slightly adapted for each project, it was not 

included into the historic analysis, but still used for the development of the fault 

classification. 

 

4.2 Inputs 
 

4.2.1 Effectiveness data sources  
 

As described in the measurement options model in section 3.5.2.2, the first step was to 

analyze the existing measurement processes to reason if the effectiveness data is available 
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for each VA. Along with this it was necessary to investigate whether the available data also 

provides the sufficient quality to be incorporated into the framework. 

4.2.1.1 Defect reports 

 

The first data sources to look for are the defect/bug reports, since they usually provide the 

necessary information or are easy to adapt to collect the required information in the future. 

Table 15 lists the defect reports that were available for the different VAs at RUAG. 

 

Activity Bug reports 

DR  Design Review document 

DDR Code Inspection sheets 

UT --- 

CI Code Inspection sheets  

I-IT --- 

I-VT-TS --- 

F-IT Software Problem Reports 

F-VT-TS Software Problem Reports 

VT-RB Software Problem Reports 

AR Software Problem Reports 

Table 15: Bug reports of each VA 

 

All bug reports contain general information about the defect, such as: 

 Project name 

 Module name 

 Version 

 Creation date of the report 

 Author of the bug report 

Apart from these fields, the bug reports differ in the level of detail and the available 

additional information. 

 

Design review document 

 

The Design Review document is a text document describing the design flaws found by the 

reviewer. In a table, for each fault that was found the following information is given: 

 

Paragraph A reference to the corresponding paragraph in the software design 

document where the fault occurs 

Comment / Suggestion The description of the actual fault in the source code that made the 

defect occur  

Author's response The action of the author to fix the flaw, e.g. diagram/description 

updated, ignored or no action.  

Status Status of the problem, e.g. OK or closed 

Table 16: Available information of the Design Review document 
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Code inspection sheets 

 

The Code Inspection sheet contains the interface-definition (.h) and implementation files (.c) 

of the module that was inspected. The filled-out checklist, the code metrics and the output 

from the static analysis tool are also attached to the sheet. The actual defect tracking is done 

in the sheet through annotations at the side of the source code. I.e. the reviewer marks the 

location in the source code where the fault or flaw was detected and annotates it with a 

comment describing the problem. 

 

Cause of rejection 

 

The reviewer doing a Code Inspection typically not only writes a comment for faults, but 

also for suggesting improvements, asking for clarifications or point out minor flaws. Hence, 

not every comment in a Code Inspection causes a rejection of the code. 

 

Software problem reports 

 

The Software Problem Reports are generated from Rational ClearQuest, a bug and change 

tracking tool from IBM [CLQ09]. The report contains the following information: 

 

Severity The severity of the defect (Minor, Major). 

Priority The priority of the defect (Urgent, Normal, Low). 

Cause Process The phase where the defect was introduced (allowed values were 

taken from the default list of ClearQuest and were not adapted to 

RUAG). 

Specific Cause The reason for the problem or the software artifact where the 

defect occurred (allowed values were taken from the default list of 

ClearQuest and were not adapted to RUAG). 

Detected by The phase in which the defect was found (allowed values were 

taken from the default list of ClearQuest and were not adapted to 

RUAG). 

Symptoms A description of the symptoms of the defect. This description is 

mainly written for the customer. 

Cause A description of the actual fault in the source code that made the 

defect occur. 

Solution A description of the solution to fix the bug. 

Table 17: Available information of the Software Problem Report 

  

RUAG starts to write SPRs very late in the process, specifically after TRR has been reached 

and thus, for the first time during IT. At this point in the software development process, 

fixing a defect usually involves several people. Therefore, any action taken out to fix the bug 

(e.g. redoing the Code Inspection) is listed in a table with the following fields: 

 

 Number of the action 

 Status  (Open/Closed) 

 Description (Description of what was done)  

 Result  (List of files that were changed) 

 Assigned (Person assigned to do the action)  

 Closed by (Person who closed the action)  

 Date (Date when the action was closed) 
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4.2.1.2 Further available sources 

 

As can be seen in Table 15, there are no direct bug reports available for the activities UT, I-

IT, and I-VT-TS. 

 

Besides the aforementioned obvious data sources, it is also possible to extract the 

effectiveness information from other data sources that might however be more difficult to 

analyze.  

 

Commit comments  

 

A further data source is the history from the source code versioning system. Since changes 

and bug fixes on the code base are typically commented, these comments can be used along 

with the diff to the previous code version to extract the defect information. 

 

Test reports and test execution logs (STEL) 

 

Due to the ECSS standard RUAG has to document that a test phase has completed 

successfully. Hence, test reports and test execution logs are written to document that the tests 

have been accomplished.  

 

Tickets 

 

The web based bug tracking tool CVSTrac [CVS06] was used in certain projects for defect 

reporting before the start of SPR reporting. Besides a description of the problem extensive 

information is logged 

 Type (Type of the problem, e.g. todo) 

 Status  (Open/Closed) 

 Severity  

 Priority 

 Creator (Person who created the report) 

 Created (Date when the report was created) 

 Assigned To (Person assigned to fix the problem)  

 Closed by (Person who closed the report)  

 Last change (Date when the last change was done) 

 Due date (Date when the problem has to be solved) 

 Version (Version of the artifact) 

 Subsystem (Name and version of the subsystem) 

 Derived From (How or where the fault was found) 

 Fixed By (Person who fixed the problem) 

 Cause (Cause of the problem)    

4.2.1.3 Quality analysis 

 

As listed in the previous section, several data sources already exist that could serve as 

measurements for a future VAMOS application and for a first VAMOS iteration on historic 

data. However, several problems exist with each data source, which lead to the fact that these 

data sources respectively the current measurements may not be used without modification 

for a future VAMOS application and make it difficult to perform a historic analysis. 
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Design review 

 

 The design review mostly consists of faults regarding the documentation of the 

design rather than the design itself. 

 The versions of the design review documents are not always consistent with the 

design, since it is based on intermediate versions of the design document that are 

published in the document repository. Thus, an a posteriori analysis is very difficult 

to perform, since it is not always possible to completely understand the defect from 

the design review without knowing what was changed in the model 

 

Code inspection sheets 

 

 In some Code Inspection sheets the defects which caused the rejection of the code 

were explicitly indicated in a table at the beginning of the Code Inspection sheet. 

Because this was done rather irregularly and depending on the person, it was not 

possible to use this information to exclude defects from the data analysis that were 

considered by the reviewer as having no influence on the quality of the system. 

 Additionally, comments are sometimes made in the code inspections assuming a 

defect by the reviewer. But a justification is made by the developer that this is not a 

defect or that the reviewer made a mistake. Thus, not all comments are defects. 

 Since modules were sometimes reused, the code inspections were also included from 

the old projects. This makes it difficult to distinguish whether a code inspection 

belongs to the current project or not.  

 

Software problem reports 

 

 RUAG starts to collect SPRs very late in the software development process and 

therefore usually only very few SPRs exist for each project.  

 As with the design review, an a posteriori analysis is very difficult to perform since 

the descriptions are typically very short and do not contain the code changes which 

makes it hard to understand the defect. 

 Since the SPRs are mainly used either by the customer to submit a defect report 

and/or to prove to the customer which defects occurred and that they were fixed, the 

SPRs are not used for any process improvement. In addition, no formal process or 

instruction is given on how to fill out the information. This means that in particular 

the classification about the fault type, the phase where it was found, and the phase 

where it was introduced differ significantly among the developers and cannot be 

considered reliable.  

 

Commit comments 

 

 Since the VAs are interwoven (see section 2.5), it is very difficult to map the commit 

comments that to a specific VA and would require a very high effort. Furthermore, 

the commit comments only show when the developer submitted the fix of the defect, 

but not when it was detected. 

 It is very difficult to understand and classify the defect a posteriori and to figure out 

where the defect could have been found. It is especially difficult if the 

analysis/classification is not done by the developer but by another person.  

 A very large data set exist (e.g. up to 120 000 commits exist in total for project B, 

whereas 10 000 commits contain a comment) which needs to be filtered and sampled 

for an analysis. This filtering however may omit defects and hence, the defect data is 

not completely accurate. 

 Furthermore does the level of detail differ in the comments. Thus, some comments 

are extensively described, while others consist of only a few words (like e.g. “fix”) 
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or do not comprise any comment at all. This is due to the fact that no standardized 

way of writing commit comments is given. 

 

 

Test reports and test execution logs (STEL) 

 

 As the test reports and execution logs are written at the end of the test campaign, 

they are only used for documenting that all tests have passed and thus do not contain 

any information about any defects found in the VA. 

 

Tickets 

 

 The usage of the web based ticketing system was decided by one team to simplify 

the fault removing and communication among the developers. It was however used 

only informally and therefore the detail and accuracy of the information differ 

strongly among the tickets. Furthermore, the standard fields of CVSTrac were used 

to provide information regarding the defect, but no formal instruction existed on how 

to fill out these fields. Thus, every developer interpreted and filled out the fields 

differently. 

 It is very difficult to relate a defect to the VA that found it or the VA that could have 

found it, since the information is missing and the ticket does not contain any 

changed code.  

 

4.2.2 Cost data sources 
 

The cost data measurement is performed in several spreadsheets for each project and is 

primarily used for accounting and organizational purposes. The developer basically enters 

the amount of time spent on each activity.  

4.2.2.1 Quality analysis 

 

As with the effectiveness data sources, the current cost data measurement has several 

drawbacks which are outlined in the following. 

 

Different partitioning 

 

The current cost data is typically split up into SW Design / SW Architecture, Produce SW 

Modules, SW Integrate as well as SW Qualify. Thus, the cost partitioning is very coarse 

grained and a further breakdown is needed to retrieve the figures for all atomic activities as 

listed in Table 5. This however is not possible with the current data since no information is 

available that would allow such a breakdown.  

 

No separation of SEC & RRC 

 

Since the measurement is used mainly for accounting and organizational purposes, no 

difference is made between SEC and RRC and the both costs are tracked together in the 

spreadsheet. This means, that if a bug was found in VT-TS, the time spent on doing unit 

regression testing is attributed to the unit test cost, the time for the regression code inspection 

is attributed to the code inspection cost, and so on.  

 

Different layout 

 

The spreadsheets differ among each other in the way of presenting the cost data. E.g 

sometimes the y-axis contains the names and the x-axis contains the weeks and the developer 



  75 

has to enter the time spent during the week. The differentiation between the activities is done 

by using several worksheets. In another layout, the names of the developers are on the x-axis 

and the tasks are on the y-axis, so that the developer enters the amount of time spent on each 

activity. These different layouts make it hard to analyze the cost data. 

 

Inconsistencies 

 

Since no formal cost measurement process exist, the cost data contain inconsistencies and 

are not completely accurate. E.g. the work tracking is omitted or different developers 

attribute the same type of work to different assets. Furthermore, in one project, the cost 

measurement process was only started in the middle of the project so that half of the data is 

missing. 

 

Thus, the current cost measurement process is not applicable to VAMOS in its current form 

and needs to be adapted. Additionally, a historic analysis is not possible with the current cost 

tracking spreadsheets due to the inconsistencies and inaccuracies.  

 

4.3 Quality Gates 
 

4.3.1 Fault classification 
 

Before conducting this study, the company did not use an internal defect classification. 

Defects were either not classified or classified using the default classification scheme from 

the vendor of the bug-tracker in use. This was of course not adapted to the company‟s 

domain or the framework. Hence, a defect classification had to be developed that was 

tailored for the framework and the domain of embedded aerospace applications.  

 

Therefore, the fault classification was created from scratch using the process as described in 

section 3.5.1.2.  

4.3.1.1 Initial fault classification 

 

From the comparison of the existing defect classifications in Table 8, an initial classification 

was derived that contained classes for the assumed defects and is shown in Table 18. 

 

Fault Type Description 

Assignment Assignment and initialization errors. 

Understandability Documentation, code comments, unnecessary code. 

Threading/ 

Concurrency 

Defects in the management of shared resources. 

Function/Interface Requires a formal design change. 

Hardware Interface Problems related to the interface between hardware and software. 

Timing/ 

Performance 

Time constraints are not fulfilled; performance is not sufficient 

Algorithms Defects in algorithms, including logical expressions. 

Robustness Boundary checks, error & exception handling. 

Table 18: Initial fault classification 
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4.3.1.2 Iterative refinement 

 

The initial fault classification was then iteratively refined through the following steps: 

 

1. Analysis of code inspection sheets (for the CI activity) 

2. Analysis of design reviews (for the DR activity) 

3. Analysis of commit comments (for the UT activity) 

4. Analysis of software problem reports (for the activities: F-IT, F-VT-TS, VT-RB, 

AR) 

5. Reclassification of code inspection sheets and validation of the fault classification 

consistency 

6. Shadowing and interviews on unit testing (for the UT activity) 

 

Analysis of code inspection sheets (for the CI activity) 

 

It was decided to start the iterations by analyzing the code inspection logs, which proved to 

be a very good data source. These logs consisted of the source code annotated with the 

problems found by the inspectors. This should especially help in the first step of the 

classification development. 

 

To reach a high validity, a random subset of code inspections was chosen (20% of project A 

and 10% of project B) from two different projects. Then, each defect in every chosen 

inspection log was analyzed independently by two researchers, which tried to assign a defect 

type as well as stated how sure they were with their classification and whether they had 

problems understanding the defect. This was done using a simple ordinal scale with the 

values completely sure, uncertain and don’t know. In total 622 defects were analyzed, where 

the classification took between 30 and 45 seconds per defect. 

Figure 36 shows for each researcher (A1 and A2) how they classified the defects and how 

sure they were about the classification. As can be seen, several uncertainties exist for the 

function/interface, the algorithms as well as the assignment class. Thirteen major issues 

within the classification were identified in total by performing a root-cause analysis. 
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Figure 36: Analyzed faults after the first iteration 
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One of the results was e.g. that the algorithm and assignment class were collapsed, since it 

was hard to differentiate the two. Furthermore, the Threading/Concurrency and 

Timing/Performance were merged and the documentation of the classes was improved. 

 

The revised classification contained then the following classes: 

 

 Algorithm 

 Understandability 

 Function/Interface 

 Hardware Interface 

 Timing/Concurrency 

 Robustness 

 

Analysis of design reviews (for the DR activity) 

 

As a next step, it was decided to investigate the design review sheets to also include another 

software artifact than only the source code. Therefore the DR of project B was analyzed 

which contained a total of 49 defects in three review sheets. 

 

The analysis was performed in the same manner as the code inspection sheets.  The main 

problem here was the distinction between the algorithm and the function/interface class. 

After discussing the problem, it was decided that the algorithm should only consider the 

inner parts of the methods while function/interface on the other hand should cover the 

method signatures, global variables and dependencies across modules. 

 

Analysis of commit comments (for the UT activity) 

 

In the next step, it was tried to analyze the faults found in the UT activity. Since no defect 

reports existed for this activity, it was decided to evaluate the commit comments from the 

versioning history. With the problems described in 0, it turned out however that the analysis 

was rather hard to perform, so that after filtering the comments, 14 defects remained which 

still couldn‟t be related to the unit test activity with 100% certainty. Since these defects were 

all classified as algorithm defects and no problems or discrepancies between the researchers 

appeared, no changes were made to the classification. 

 

Analysis of software problem reports (for the activities: F-IT, F-VT-TS, VT-RB, AR) 

 

After the commit comments, the SPRs were analyzed are written after the TRR. The 19 

SPRs were taken first only from project A and B. In the comparison, it became apparent that 

it was hard to decide whether a defect belongs to the hardware interface or not. Since this 

issue couldn‟t be resolved by the researchers, it was decided to clarify this in the quality 

review with the developers. Another problem that was already observed in the earlier 

iterations was that several understandability problems existed, which are quite different in 

their nature and severity for the product. Thus it was decided to split the class intro 

understandability issues, which can lead to misunderstandings and thus severe defects, and 

beautification issues, which only consider minor problems like typographic errors and code 

formatting.  

 

A further problem was discovered regarding the orthogonality of the classes. It was often the 

case that defects fit into two categories. Since it was considered impossible to make the 

classes strictly orthogonal, it was decided to introduce a priority ranking instead: 

 

1. Hardware Interface 

2. Timing/Concurrency 
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3. Robustness 

4. Interface <-> Algorithm (are orthogonal) 

5. Understandability 

6. Beautification 

 

Hence, whenever a fault fits into two categories, it is assigned to the class with the higher 

priority.  

 

Because only very few SPRs existed for the two projects, it was decided to also take into 

account the SPRs of project D which were about 400 in total. Although the project was 

already completed several years ago and thus is not representative for the current process, it 

was still valuable to analyze these SPRs (25% were randomly selected and analyzed), since 

they contained typical faults, especially regarding the hardware interface and 

timing/concurrency. 

 

The comparison therefore resulted in a refinement and further documentation of these two 

classes as well as a modification of the robustness class. 

 

Reclassification of code inspection sheets and validation of the fault classification 

consistency 

 

As the classification had been revised several times, it was decided to do another analysis of 

the CI sheets with the updated fault classification and compare the results with the first 

analysis of the CI sheets. The agreement factor as discussed in section 0 was calculated for 

both iterations.  

In the first iteration, an agreement factor of 0.30 (inadequate) was calculated and a factor of 

0.70 (good) was calculated for the iteration with the updated fault classification. Hence, the 

consistency of the fault classification was now good enough. This proved also the calculation 

of the agreement factor for the analysis of the SPRs from project D in the previous section, 

which resulted in a value of 0.71 (good). 

 

Shadowing and interviews on unit testing (for the UT activity) 

 

To gain more evidence about the applicability of the fault classification to the UT activity, it 

was decided to perform interviews and to do shadowing sessions, which means that the 

researchers observed two testers while performing unit tests [LET05].  

 

The interviews and shadowing sessions did however not reveal any new problems to the 

fault classification. 

 

4.3.1.3 Quality review 

 

The fault classification was reviewed in a meeting with four representatives from RUAG. 

The people were chosen so that a responsible and experienced person for every VA was 

present. The meeting resulted in several minor changes as well as a change in the priority 

list, but no changes in the classes were made.  

 

The final classification including the priority ranking is as follows:  

 

1. HW interface 

2. Timing/Concurrency 
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3. Algorithm  Interface 

4. Robustness 

5. Understandability 

6. Beautification 

 

The full fault classification can be found in Appendix A. 

 

4.3.2 Defect measurement options model (MOM-DEMO)  
 

As the quality analysis of the currently available data sources described in section 4.2.1.3 

shows, currently no measurement at RUAG does fully satisfy the demanded quality 

requirements. Hence, no measurement may be used without modification in VAMOS. 

Therefore, a measurement options catalog was developed to derive the measurements for 

each VA.  

4.3.2.1 Measurement options catalog 

 

The following list describes all measurement options and the manner of how RRC can be 

measured and sampling achieved.  

 

Spreadsheet 

 

Use a spreadsheet application to track the defect data. The following information need to be 

collected for each defect:  

 Information regarding the module (filename, version) to trace the defect back to the 

code 

 Fault type  

 Phase found 

 Phase could have been found 

 

Sampling must be done manually. An easy way of sampling can be achieved by using a 

random number generator tool. That means that the developer requests a random number 

between 0 and 1 from the tool before entering a defect. If this number is below a certain 

threshold (e.g. 0.1), the developer has to enter the defect information, otherwise it can be 

skipped. 

 

The RRC data can be measured directly within the spreadsheet as an extra column or an 

extra sheet referencing to the defect tracking sheet. 

 

Introduce a lightweight bug tracker 

 

Introduce a new bug tracking tool or web page which should contain fields to enter the 

following information: 

 Information regarding the module (filename, version) to trace the defect back to the 

code 

 Fault type  

 Phase found 

 Phase could have been found 

 

Sampling must be done manually (see spreadsheet option) if the tool does not support 

sampling itself. The RRC measurement should be done within the bug-tracker, thus, it 

should support this option. 
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Reuse of ticket system 

 

Reuse the existing ticket system described in 0 that was used in earlier projects. The 

following information will have to be tracked: 

 Information regarding the module (filename, version) to trace the defect back to the 

code 

 Fault type  

 Phase in which the fault was found  

 Phase in which the fault should have been found  

 

Sampling must be done manually (see spreadsheet option) and the RRC measurement can be 

integrated into the ticket system. 

 

ClearQuest 

 

Use the ClearQuest tool which is already used for the tracking of the software problem 

reports (SPRs) and tailor it to VAMOS to allow the logging of the necessary information: 

 Information regarding the module (filename, version) to trace the defect back to the 

code 

 Fault type  

 Phase found 

 Phase could have been found 

 

Sampling must be done manually (see spreadsheet option). RRC measurement is already 

integrated through the actions.  

 

Structured commit comments 

 

Use the commit comments of the source code versioning system for tracking the defects. 

That means that when submitting a defect, the developer has not only to enter a description, 

but has also to fill out a short template with the following information: 

 Fault type  

 Phase found (if the option is used for other phases than unit test) 

 Phase could have been found 

This requires the developer who fixes the defect to track the defect and make sure that 

defects that require several changes in different files only are committed once.  

 

Sampling can be done within the versioning tool, by making the template appear only from 

time to time. RRC measurement might be integrated by adding it to the template. This 

however only works for unit testing, but not for later phases where more people contribute to 

the RRC. Otherwise, the RRC measurement can be done within a spreadsheet. 

 

Modify versioning tool 

 

Modify the source code versioning tool to open the web based ticketing system, when the 

developer commits a bug fix. The following information need to be collected for each defect:  

 Fault type  

 Phase found (if the option is used for other phases than unit test) 

 Phase could have been found 

 

Sampling and RRC measurement can be done similar as with the structured commit 

comments.   
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Store test logs 

 

Automatically store the test logs from the test tool. The faults are later on, e.g. after the test 

campaign is completed or the project is finished, classified with the help of the information 

from the test logs. The classification needs then to be stored either in the test logs themselves 

or in another spreadsheet, which may be generated from the test logs. The following 

information need to be collected for each defect:  

 Fault type  

 Phase could have been found 

 

Sampling can be achieved by modifying the tool so that it stores only a sample. RRC 

measurement may be either done within the stored test logs or using a spreadsheet. 

 

Modify test tool 

 

Modify the test tool to store the faults in a database and provide e.g. a web form that allows 

later classification as soon as the defect was fixed. The form for entering the defect data 

would need the following information:  

 Fault type  

 Phase could have been found 

 

Sampling and RRC measurement can be done similar as with the test logs. 

 

Change code inspection sheet 

 

Change the inspection sheet to include a table that lists every defect along with the following 

information:  

 Fault Type  

 Phase could have been found  

 

Sampling must be done manually (see spreadsheet option). RRC measurement can be done 

within the code inspection sheet by having another column in the table to log the RRC cost 

for each VA. 

 

Write in code inspection comments 

 

The defects are classified within the annotations of the source code in the code inspection 

sheets. This could happen similar to the structured commit comments by having a template 

that has to be filled out within the code annotation. The following information need to be 

collected for each defect:  

 Fault type  

 Phase could have been found 

 

Sampling must be done manually (see spreadsheet option). RRC measurement can by adding 

another entry to the template.  

 

Measurement options overview 

 

Table 19 shows a summary of the different properties of the listed measurement options. The 

table shows how the information is measured with each option. I.e. the information to trace 

the defect back to the changed code or design, the fault type, the phase where it was found, 

the phase where it could have been found as well as the removal and regression cost. 

Additionally it is shown how sampling can be achieved. Here, manually means, that the 

information has to be entered by the developer whereas automatically means that the 
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information is entered by the tool or is already available through other means. Integrated 

means that the information can be entered directly while spreadsheet means that it is not 

possible to track the information within the tool and therefore need to be stored within a 

separate spreadsheet.   

 

 
Source code 

information 

Fault 

Type 

Phase 

found 

Phase 

could 

have been 

found 

RRC 

measurement 

Sampling 

Spreadsheet Man. / Integr. Man. / 

Integr. 

Man. / 

Integr. 

Man. / 

Integr. 

Man. / Integr. Man. 

Lightweight bug 

tracker 

Man. / Integr. Man. / 

Integr. 

Man. / 

Integr. 

Man. / 

Integr. 

Man. / Integr. Man. 

Ticket system Man. / Integr. Man. / 

Integr. 

Man. / 

Integr. 

Man. / 

Integr. 

Man. / Integr. Man. 

ClearQuest Man. / Integr. Man. / 

Integr. 

Man. / 

Integr. 

Man. / 

Integr. 

Man. / Integr. Man. 

Structured 

commit 

comments 

Auto. / Integr. Man. / 

Integr. 

Auto.* / 

Integr. 

Man. / 

Integr. 

Man. /  

Integr.** 

Auto. 

Modify 

versioning tool 

Auto. / Integr. Man. Auto.* / 

Integr. 

Man. / 

Integr. 

Man. /  

Integr.*** 

Auto. 

Store test logs Auto. / Integr. Man. / 

Integr. 

Auto. / 

Integr. 

Man. / 

Integr. 

Man. / Integr. or 

Spreadsh. 

Auto. 

Modify test tool Auto. / Integr. Man. / 

Integr. 

Auto. / 

Integr. 

Man. / 

Integr. 

Man. / Integr.  

or Spreadsh. 

Auto. 

Change code 

inspection sheet 

Auto. / Integr. Man. / 

Integr. 

Auto. / 

Integr. 

Man. / 

Integr. 

Man. / Integr. Man. 

Write in code 

inspection 

comments 

Auto. / Integr. Man. / 

Integr. 

Auto. / 

Integr. 

Man. / 

Integr. 

Man. / 

Spreadsh. 

Man. 

* when only used for unit testing, otherwise manually 

**when used for unit testing, otherwise using a spreadsheet 

***if combined with ticketing system, otherwise using a spreadsheet 

Table 19: Properties of effectiveness measurement options 

 

4.3.2.2 Rating of measurement options 

 

Table 20 shows the list of measurement options for each VA along with its assumed fixed 

effort, variable effort, accuracy and the RRC measurement. The rating and selection was 

made by the two researchers. The final selection was then discussed in a further workshop 

(see section 4.3.2.3) with responsible persons from RUAG. 

Note that the effort ratings do not yet consider the RRC measurement. Thus, an additional 

effort has to be spent whenever the RRC data cannot be measured within the tool (integrated) 

but has to be measured in a different tool (in the case of RUAG as a spreadsheet). For 

simplification reasons this additional effort was added by changing a low effort to medium, 

respectively a medium effort to high. Since the measurement of the RRC should be done 

using spreadsheet, it does have only a minimal influence on the fixed effort of the option and 

therefore only influenced the variable effort. 
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VA(s) Measurement Option Fixed  

effort 

Variable  

effort 

Accu- 

racy 

RRC 

measurement 

AR 

VT-RB 

VT-TS 

IT 

Use ClearQuest Low Medium High Integrated 

I-IT* 

I-VT-

TS 

Use spreadsheet Low Medium High Integrated 

Introduce a lightweight bug-

tracker 

High Medium High Integrated 

Reuse of ticket system Medium Medium High Integrated 

Use ClearQuest Low High High Integrated 

Use structured commit 

comments 

Medium Low High Spreadsheet 

Modify versioning tool High Low High Integrated 

Store test logs Low High Low Spreadsheet 

Modify test tool High Low High Integrated 

UT 

Use spreadsheet Low Medium High Integrated 

Introduce light-weight bug-

tracker 

High Medium High Integrated 

Reuse of ticket system Medium Medium High Integrated 

Use ClearQuest Low High High Integrated 

Use structured commit 

comments 

Medium Low High Spreadsheet 

Modify versioning tool High Low High Integrated 

Store test logs Low High Low Spreadsheet 

Modify test tool High Medium High Integrated 

CI* 

Use spread-sheet Low Medium High Integrated 

Change code inspection sheet Low Low High Integrated 

Write in code inspection 

comments 

Very 

Low 

Low High Spreadsheet 

Use ClearQuest Low High High Integrated 

Use structured commit 

comments 

Medium Low High Spreadsheet 

Modify versioning tool High Medium Low Spreadsheet 

Introduce a lightweight bug-

tracker 

High Medium High Integrated 

Reuse of ticket system Medium Medium High Integrated 

DR 

Use spread-sheet Low Medium High Integrated 

Change design review sheet Low Low High Integrated 

Use ClearQuest Low High High Integrated 

Introduce a lightweight bug-

tracker 

High Medium High Integrated 

Reuse of ticket system Medium Medium High Integrated 
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* using sampling 

Table 20: Rated measurement options at RUAG 

 

Table 21 shows the selection that was made for each VA by ordering the options by variable 

effort, accuracy and finally fixed effort. 

 

VA(s) Measurement Option Fixed  

effort 

Variable  

effort 

Accu- 

racy 

RRC 

measurement 

AR 

VT-RB 

VT-TS 

IT 

Use ClearQuest Low Medium High Integrated 

I-IT* 

I-VT-TS 
Modify test tool High Low High Integrated 

UT  Modify versioning tool High Low High Integrated 

CI* Change code inspection sheet Low Low High Integrated 

DR Change design review sheet Low Low High Integrated 
* using sampling 

Table 21: Selected measurement options 

4.3.2.3 Workshop 

 

The measurement options catalogue and the rating of them were performed by the 

developers. This was done to avoid having several meetings with responsible persons from 

RUAG and to interfere too much with their daily work.  

 

Since the measurement options may require changes in the processes, it was however not 

possible for the researchers to decide whether tools and documents may be changed and how 

much effort can be spend on the measurements.  

 

Therefore it was decided to hold a workshop with the head of software development and two 

project managers to verify the measurement options, discuss alternatives, get additional 

feedback and possibly propose other measurement options.  

 

The measurement options were in general perceived positively and some small changes and 

improvements were proposed. The result of the workshop as well as the final measurement 

options and adaptation guidelines for RUAG can be found in section 4.3.4. 

 

4.3.3 Setup & execution cost measurement options model (MOM-SECMO) 
 

The problems regarding the SEC measurement mainly affect the historic analysis. Thus, no 

new way of measurement need to be defined and the spreadsheet can be reused. However, 

slight modifications have to be made as described in section 4.2.2.   

 

4.3.4 Adaption of the framework to the RUAG software development 

process 
 

This section outlines how the RUAG software development process needs to be changed to 

adapt to the VAMOS framework presented in chapter 3. The framework requires that for 

each VA the cost and effectiveness data is available. 
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The steps that have to be performed to adapt the framework are listed in the subsequent 

sections using the following template: 

 

 Phase(s) – The phase(s) that need(s) to be changed 

 Adaption description – A short description of what needs to be changed in the phase 

in order to incorporate the framework 

 Concrete steps – The concrete steps that have to be done 

 Motivation – A motivation why this adaptation is lightweight 

 

Note, that the motivation only describes why the adaptation to the option is lightweight and 

why the measurement option facilitates the defect tracking. The process of classifying a 

defect according to its fault type and the phase where it could have been found can be said to 

be lightweight in general, since it usually takes not more than 30 seconds to classify a defect 

(see section 4.3.1). This makes the classification time especially insignificant in the later 

phases where it can take up to several weeks to fix a defect (including regression tests) and 

do the defect tracking. 

4.3.4.1 Effectiveness data measurement 

 

Design review (DR) 

 

Adaption description 

 

To measure the required information for VAMOS in the design review, the fault information 

table in the design review sheet needs to be modified. Specifically, columns have to be added 

for the fault type, the phase could have been found and the RRC data.  Figure 37 shows the 

modified table in the design review sheet. 

 

 
Figure 37: Change proposal for the design review sheet 

 

Typically, not all problems listed are real defects but rather comments or misunderstandings 

between the designer and the reviewer and usually lead to a no action in the design 

document. Furthermore, since several design reviews are performed by different reviewers, 

the same defect may be found and reported by different persons. Because of this, the design 

responsible has to collect all true defects and has to make sure that no bug is classified more 

than once. For simplification reasons, the design responsible solely tracks the RRC data, 

even if the requirements document has to be changed. The design responsible therefore has 

to estimate the RRC data for the change in the requirements.   
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Concrete steps 

 

1. Append the columns fault type, phase could have been found and RRC to the fault 

information table of the design review template sheet. 

2. Instruct design responsible to collect and classify the defects from the different 

design reviewers. 

 

Motivation 

 

The measurement is lightweight as the defects are already tracked in the current VA and only 

the template has to be modified slightly to incorporate the three additional fields. Because 

the design review typically does only find few faults, the classification is not considered to 

interfere largely with the design responsible‟s work.  

 

Unit test (UT) 

 

Adaption description 

 

The defect information in the unit test is measured through a hook-up of the version control. 

This means, that whenever a developer commits a bug-fix, the bug-tracker (i.e. the ticket 

system) is opened in the web browser and the developer has to fill out a new bug report. 

The bug tracker should however only be opened when a bug fix has been made and not when 

e.g. the developer submits his daily work. This can be achieved by scanning the commit 

message for the words bug, fix, correct, error, fault, defect, etc. 

 

Figure 38 shows exemplary how a commit message could look like using Subclipse 

[SUB09]. Upon committing this message, the text is scanned for one of the words mentioned 

above and a new ticket is issued, where the developer enters the fault type, the phase where 

the defect could have been found, the phase where the defect was found as well as the RRC 

data. 

 

 
Figure 38: Change proposal for the commit mechanism 

 

After providing the information and submitting the report, the bug is stored as shown in 

Figure 39. Note that further information like the file name(s), the version(s), the creation 

dates etc. should automatically be filled out by the versioning system upon creation of the 

bug report. 
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Figure 39: Change proposal for the ticket system 

 

It should also be possible for the developers to enter all required information already in the 

commit comment by using a command-line mechanism. Such a command could look like 

this: FT:Alg;PF:UT;FC:DR;RRC:0.3. Which means that the an algorithm fault (FT:Alg) 

was found in the unit test (PF:UT), could have been found in the design review (FC:DR) and 

caused removal & regression cost of 0.3h (RRC:0.3). Thus, using the command line 

mechanism an experienced developer should be able to avoid having to enter the information 

into the bug tracker. 

 

Similar to the design review the simplification is made that the RRC is only entered by the 

developer committing the bug fix. This means, that the person committing the defect should 

estimate the complete cost and enter it, so that no other person has to attach his cost. 

Furthermore, the developers need to be instructed to commit after each single bug fix, since 

often several changes are committed at once.  

 

Concrete steps 

 

1. Modify the versioning tool to hook up to the ticket system upon committing a bug 

fix. This requires the tool to scan the commit message for one of the keywords and 

for any commands provided. Furthermore, the versioning tool should 

automatically provide the ticket system with information about the files that were 

affected. 

2. Modify the ticket system to include the fields fault type, phase could have been 

found, phase could have been found and RRC. 

3. Instruct the unit testers to commit after each bug with one of the keywords and to 

classify the defect either in the ticket system or using the command option. 

 

Motivation 

 

A lightweight way of measuring is provided by using the commit mechanism which is 

already used anyway. By providing the ticket system automatically with most of the 

necessary information, the developer only has to enter the classification manually. 

Furthermore, a command line options allows experienced users to classify defects in a fast 

way. 
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Code inspection (CI) and detailed design review (DDR) 

 

Adaption description 

 

Similar to the design review sheets, the effectiveness and RRC data is measured within the 

code inspection sheet. Thus, a table with the defect information has to be added to the code 

inspection template sheet. The table should contain columns for the following information: 

 

 Fault number – The number of the code annotation to which this fault refers 

 Comment – A copy of the comment from the annotation to facilitate the 

classification process 

 Fault type 

 Phase could have been found 

 Removal & regression cost 

 

Figure 40 illustrates the table with example information. To simplify the fault classification, 

a macro should be developed that automatically creates and appends the table to the code 

inspection sheet and already fills out the comment column. Since the code inspection phase 

finds a large amount of faults/problems, sampling should be integrated directly into this 

macro. This means, that the macro only selects a random subset of all annotations in the 

document to be placed into the table. 

 

The classification is done by the person fixing the defect, who also estimates the complete 

removal & regression cost.  

 

 
Figure 40: Change proposal for the code inspection sheet 

 

Concrete steps 

 

1. Append a table with the columns fault number, fault type, phase could have been 

found and RRC to the code inspection template sheet. 

2. Develop a macro that upon execution selects a random subset of the annotations 

and fills the table with them. 

3. Instruct programmers to classify the defects in the code inspection sheets and to 

estimate RRC data. 

 

Motivation 

 

Like in the design review, a lightweight measurement is presented by incorporating it into 

the existing code inspection process. This way an external defect tracking application is 
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avoided. Furthermore, through the use of macros, sampling is performed to avoid having to 

classify all defect data and the annotation is copied to the table to facilitate the classification. 

 

 

Informal test campaigns (I-VT-TS and I-IT) 

 

Adaption description 

 

The data measurement in I-VT-TS and I-IT is done using a hookup of an internally 

developed set of test scripts called tc95 to the ticket system. Thus, upon a failed test case, the 

ticket system is opened and a new ticket is created. Information about the test case, the file 

name and file version should be automatically submitted to the ticket system in order to 

facilitate the bug tracking. 

 

The defect is tracked by the person of the validation team executing the test cases. The 

classification of the defect is then done by the person responsible to fix the defect. As with 

the previous options, the RRC is estimated. 

 

Concrete steps 

 

1. Modify the test tool to hookup to the ticket system when a test case fails. This 

hookup should also include automatic submission of file and test case information. 

2. Train the validation team in the use of the ticket system and instruct the 

development team to classify the defects and log the RRC. 

 

Motivation 

 

As with the other measurement options, the ticket system is reused and thus no extra tool or 

measurement process is needed. Furthermore, since in I-IT and I-VT-TS no formal way of 

communicating the defects is prescribed, the introduction of the measurement has also the 

advantage that the defects are tracked in a central point. 

 

 

Formal test campaigns (IT, VT-TS, VT-RB and AR) 

 

Adaption description 

 

Since any fault which is found after TRR (i.e. in IT, VT-TS, VT-RB and AR) has to be 

documented in a software problem report (SPR), the easiest way to measure the faults is by 

incorporating the necessary information into these SPRs.  The forms for writing the defect 

report in ClearQuest already comprise a Cause-process and a Detected by field that can be 

reused to classify the phase the defect could have been found and the phase where the defect 

was actually found. 

 

Concrete steps 

 

1. The classification in ClearQuest is still the default classification, therefore the 

classification has to be changed to the one outlined in section 4.3.1. 

2. The developers have to be trained in the classification of the defects. 

 

Motivation 

 

The change in the ClearQuest classification requires only a change of the names in the 

ClearQuest administration panel, which can be done easily by the administrator.  
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The process definition can be done by briefing the developers in a regular meeting about the 

defect classification and the use in ClearQuest.  

4.3.4.2 Cost data measurement 

 

Adaption description 

 

Use the existing spreadsheet measurement to measure the SEC data. The spreadsheet needs 

to be modified to include all the VAs outlined in section 2.5.3. Furthermore it is necessary to 

instruct the team to measure the SEC data separately from the RRC.  

 

Concrete steps 

 

1. Modify the spreadsheet to include all the VAs from section 2.5.3. 

2. Train the developers to separate the SEC from the RRC measurement. 

 

Motivation 

 

Since RUAG already performs a spreadsheet based work-tracking where every developer 

enters the time spent, this can be reused for the SEC measurement. Here, the spreadsheet 

needs to be only modified slightly, by changing the list of VAs, so that it can be used in 

VAMOS. 

 

4.4 Framework Iteration on Historic Data 
 

A first iteration of the framework was performed on historic data, since an application of the 

framework on a current project was not possible due to the fact that the framework was still 

under development and all projects at RUAG were already in an advanced state at the time 

of this research.  

 

As the reference project for the historic analysis, it was decided to take project B (see section 

4.1). The reasons for choosing project B were that it was the biggest project and contained 

therefore the most data. In particular, it contained 14 SPR of the later phases like IT and VT-

TS. Although this is still a low number, project A contained even less SPRs and project C 

was not yet completed and therefore didn‟t contain any at all. Thus, choosing one of the 

other projects would result in no defect data at all for these late phases.  

 

Performing the historic analysis on the combined data of all three projects was not 

considered useful, since the data quality and quantity among the projects differed too much. 

 

The analysis, i.e. the classification of the defects in the different VAs was performed by the 

two researchers. Both researchers classified the selected defects independently from each 

other according to the fault classification developed in section 4.3.1. In a second step, 

problems and differences in the classification were discussed and resolved to have a reliable 

set of classified defect data.  

 

4.4.1 Measure 
 

Since the analysis was done on a historic project, the data had to be extracted from existing 

data sources. In the following sections, the defect data and cost data are described which are 

then used for the analysis. 
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4.4.1.1 Effectiveness data 

 

Design review (DR) 

 

The design review was performed by three different reviewers. The historic analysis was 

done by evaluating the defects reported in these three review documents.  

 

Figure 41 shows the faults found in the design review. As can be seen, the most faults were 

understandability and beautification. Although several interface faults were found, it was 

expected that the interface faults would by far build the largest defect group in the DR. 

 

Furthermore the DR found several algorithm faults, whereof some of them slipped through 

from the requirements review.  

 

Alg
or

ith
m

s

H
W

 In
te

rfa
ce

U
nd

er
st

an
da

bi
lit
y

Tim
in
g/

C
on

cu
rr
en

cy

In
te

rfa
ce

R
ob

us
tn

es
s

B
ea

ut
ifi
ca

tio
n

0

5

10

15

20

25

Requirements Review

Design Review

 
Figure 41: Historic analysis – Faults found in design review 

 

 

Unit test (UT) 

 

No defect data existed for the unit test activity except for the commit comments (see section 

0) which proved however to be difficult to analyze (cf. section 0). Therefore it was decided 

to perform interviews and conduct shadowing sessions [LET05] in which the researchers 

observed two developers while they performed the unit testing.  

 

The analysis revealed that in the unit test phase typically one defect per module is found, 

which is usually an algorithm fault or a robustness fault. This means that for a typical sized 

project, about 30 faults are found in the unit test activity. 

 

Since the shadowing sessions didn‟t give a lot of results and the interviews only gave 

information about typical faults, it was not possible to judge about in which phase the defects 

could have been found. 

 

The full summary of the interview and shadowing sessions can be found in Appendix B. 

 

 

Code inspection (CI) and detailed design review (DDR) 

 

The detailed design and the code inspection were considered together. This was necessary 

due to the fact that the detailed design was done basically as a code inspection on the 
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interface (header) files and it was therefore not possible to distinguish the detailed design 

review and the code inspection. 

 

One problem that appeared during the classification of the defect data was the distinction of 

whether a fault could have been found in DR or in DDR (which in essence means the CI 

activity, since these two phases were considered together). The following table shows 

therefore the distinction that was made to differentiate these two phases. The left column 

shows the types of faults which could have been found in the design review while the right 

column shows the faults that could have been found in the detailed design review 

respectively code inspection. 

  

Design review Detailed design review 

Method names 

WHAT* description (for class & methods) 

Dependencies 

Method parameters 

Return values 

Usage constraints 

Implementation constraints 

HOW** description 

Types 

General descriptions 

* Description indicating the purpose of the class or method, i.e. what it is supposed to do 

** Description indicating how the purpose is achieved, i.e. by exemplifying the algorithm 

Table 22: Distinction between DR and DDR for the phase could have been found attribute 

 

Figure 42 shows the faults found in the code inspection sheets. As can be seen directly, the 

most defects that have been found in the CI are understandability defects. Additionally a lot 

of beautification defects are found. Almost none of these faults were a slip-through, i.e. 

almost all understandability and beautification faults could only have been found in CI. This 

usually means that no problem exists. However, because of the large number of defects it 

might be desirable to reduce this number of defects by developing means to prevent these 

defects from occurring. 

 

More important and interesting than the understandability and beautification defects is 

however the large number of FST in the interface faults from the DR to the CI. This gives 

already a first indication that the design review needs to be improved. 

 

Another significant fault slip through exists from the UT for algorithm and robustness 

defects.  
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Figure 42: Historic analysis – Faults found in code inspection 

 

 

Informal test campaigns (I-IT and I-VT-TS) 

 

As described in section 4.2.1, no data sources existed for measuring defects in the VAs IT 

and VT-TS. Although it is theoretically possible to extract the fault data from the commit 

comments, it was not considered practically feasible, as the defects in these phases typically 

span multiple code files and are more complex. This makes it almost impossible to 

understand the defect a posteriori. Hence, the I-IT and I-VT-TS were not considered for the 

historic analysis.  

 

Formal test campaigns (IT, VT-TS, VT-RB, AR and X-CI) 

 

For the later phases after TRR, only the aforementioned 14 SPRs existed which contained 

defects for the phases I-IT, VT-TS, VT-RB, AR and an externally conducted code inspection 

(X-CI). It was necessary to combine the VAs VT-TS and VT-RB in this analysis because the 

SPRs that occurred in one of these phases were both marked as qualification test, and thus 

couldn‟t be differentiated.  

 

Figure 43 shows the defect analysis for these phases. The chart shows the faults that were 

found in IT, VT-TS as well as in X-CI (on the x-axis). In contrast to the previous charts, the 

fault types were omitted this time because only very few defects (respectively defect reports) 

exist for these VAs. The phase where the defect could have been found is indicated by the 

different patterns (on the y-axis). E.g. one fault was found in IT that could have been found 

already in DR and four faults in IT could have already been found in I-VT-TS. 

 

The activities I-IT and I-VT-TS were considered the same for the classification of the phase 

could have been found attribute. This was necessary because it could not be differentiated by 

the researchers if a defect could have been found in I-IT or I-VT-TS.  
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The most important observation that can be made is that quite a large number of faults 

slipped through from the design review. Another significant FST occurs from the informal 

activities to the formal activities, i.e. from I-IT respectively I-VT-TS to the formal IT and 

VT-TS.  
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Figure 43: Historic analysis – Faults found in SPRs (i.e. IT, VT-TS and X-CI) 

4.4.1.2 Cost data 

 

Since no adequate data source was available for the cost data, it was decided to get data 

through expert estimation. The cost data was estimated by two domain experts, namely the 

head of software development and a software project manager, for a typical sized project of 

15 000 man hours and about 30 modules.  

 

Table 23 shows the cost data for the VAs. For each VA, the SEC and the RRC was estimated 

in man hours. Since the framework requires the RRC to be measured for each fault type and 

it was considered impossible by the domain experts to accurately estimate the cost for each 

type, a simplification was made. The experts should rate the relative cost for each defect type 

in each VA on an ordinal scale consisting of the elements Low, Medium and High 

respectively Not Applicable if it was impossible to judge. E.g. the average RRC cost for DR 

are four hours, but the cost to fix a Beautification fault was considered as Low, stating that it 

is usually fixed in less than four hours.  
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Low (L) / Medium (M) / High (H) / Not Applicable (NA) 

DR 100 4 L M H M M NA L 

DDR 150 4 L M H M M L L 
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CI 450 4 L M H M M L L 

UT 1200 4 NA M H M M L L 

I-VT-TS 3000 30 NA H H H M L M 

I-IT 200 30 NA H H H - L M 

IT 50 30 - - - - - - - 

VT-TS 100 80 NA H H H M M M 

VT-RB 100 80 NA H H H M M M 

AR 40 80 NA H H H M M M 

X-DR 100 10 L M H M M L L 

X-DDR 100 10 L M H M M L L 

X-CI 100 10 L M H M M L L 

X-VT 100 80 NA H H H M M M 

Table 23: Estimated SEC and RRC per VA and FT 

 

The historic analysis is then performed by calculating the RRC for each fault type using the 

ordinal scale. By assigning a numeric value to each scale value, e.g. 0.5 to Low, 1 to Medium 

and 2 to High, the RRC is calculated for each fault type by multiplying the actual RRC with 

the coefficient.  

Table 24 shows an example of the calculation done for three fault types for the DR activity. 

 

Fault type in DR Normal RRC Coefficient Calculated RRC 

Beautification 4h 0.5 (Low) 2h (4h * 0.5) 

HW-Interface 4h 1 (Medium) 4h (4h * 1) 

Timing / 

Concurrency 

4h 2 (High) 8h (4h * 2) 

Table 24: Calculated RRC values 

 

Note that this simplification can influence the analysis quite significantly and results gained 

by the analysis should therefore be used with care for any improvement recommendations 

and rather be seen as indicators (see also 4.4.5).  

 

4.4.2 Analyze 
 

Using the effectiveness and cost data from the previous section, the IPs are calculated. 

Because of the few faults found in the fault categories HW interface and Robustness, the IP 

was not calculated for these fault types. Furthermore, no IP was calculated for 

understandability and beautification faults, as there was no or a very low FST for these 

groups. 

 

Thus, only the IPs for the algorithm, interface and timing/concurrency fault types were 

calculated as shown in Figure 44. The DR stands out with a very high IP for interface faults. 

Furthermore the DR has a significant IP for the algorithm and timing/concurrency defects. 

This strengthens the earlier indications that the DR is one of the phases on which to focus the 

improvements. Another relevant IP exists for the algorithm faults in I-VT. 
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Figure 44: Historic analysis – Calculated improvement potentials 

 

4.4.3 Improve 
 

As the analysis phase revealed, the DR has the highest improvement potential for interface 

faults. Thus, the interface faults from the code inspection sheets and the SPRs which could 

have been found in the DR are further analyzed according to the root-cause analysis process 

described in section 3.6.3.2. Table 25 shows the sub groups that were built by the two 

researchers and the number of faults that belong to each subgroup as well as the possible 

savings that can be achieved if the faults are found in DR.  

 

Group description  # of faults Possible savings (in hours) 

Missing interface description  6  12  

Incorrect interface description  10  20  

Unnecessary operation/constant  8  16  

Missing constant/structure Item  2  80  

Compiler settings  1  78  

Table 25: Sub-grouping of the interface faults in DR 

 

From the table, the grey marked sub-groups were selected to derive change proposals. The 

missing interface description can be prevented from reappearing by having automatic checks 

for empty WHAT descriptions in the design. The unnecessary operations or constants can 

similarly be checked by an automated tool. 

 

In the next step, the improvement gains are calculated for these two change proposals. 

Therefore, the 14 errors will not appear in future projects, accounting for a total saving of 28 

hours.  Note, that since the only 10% of the code inspection sheets have been analyzed, the 

real number of defects has to be extrapolated and hence the savings as well. Therefore, a 

total time of 280 hours may be saved by introducing the change proposals. 
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Furthermore, as indicated in the measure section, the high number of understandability and 

beautification faults leave room for optimizations. This is especially true, since these faults 

are usually non-critical issues which may be prevented easily from reoccurring. E.g. the 

majority of the beautification faults may be prevented by using a spellchecker and a code 

beautifier. In addition does a large amount of the understand ability faults result from not 

complying to the coding standard, which may be prevented through the use of tools that 

automatically check for coding standard compliance.  

 

Although these faults are typically easy to fix and therefore it is not very likely that they will 

result in a lot of savings, these change proposals will still have the benefit that the inspectors 

are left from the burden to check for these simple faults and can therefore concentrate more 

on the actual and more severe faults.  

 

4.4.4 Implement 
 

This phase was skipped for the case study, since it was out of the scope of this research.  

 

4.4.5 Threats to validity 
 

Several threats to validity exist for this case study. The biggest threat is that no adequate data 

sources were available for the use of the case study. As outlined in section 4.2.1.3, several 

problems exist with the data sources and the historic data in terms of accuracy or quality. 

Additionally, no effectiveness data sources existed for the informal activities & the unit test 

and the cost data had to be estimated completely.  

 

Since the fault classification had been developed in this study, another problem was that all 

defect data had to be classified according to the defect type and phase “could have been 

found” by the researchers. This always carries the risk that the defects are misunderstood by 

the researchers and therefore classified wrongly. Furthermore, assumptions had to be made 

when judging in which VA the fault could have been found. 

 

The results gained from the study, i.e. the problem analysis and the change proposals should 

therefore be only used as a first indicator for problems in the process.  

 

The case study shows however the principal applicability of the framework to an industrial 

setting. The problems in the design review were e.g. confirmed by several members from the 

software development team during a presentation of the VAMOS framework.  
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5 AGILE APPLICATION AT SSC 
 

This section discusses the applicability of the framework at the Swedish Space Corporation 

(SSC) in Solna, Sweden. The company was chosen as a representative for companies that 

have a different development approach than the traditional V-model approach used at 

RUAG. SSC uses agile principles such as SCRUM [SCH95] and test-driven development 

(TDD) for developing software. Furthermore, SSC makes heavy use of model-driven 

development.  

 

The evaluation was done in a three-day‟s workshop at SSC, where the software development 

process of SSC was analyzed and the applicability of the VAMOS framework was discussed 

with SSC employees. The framework was first presented to two developers and one project 

manager in an initial meeting to get early feedback. The development processes and 

available data sources (i.e. existing defect measurements) were then further analyzed and the 

applicability of the framework evaluated. In particular it was discussed which problems SSC 

faces compared to RUAG and how the framework could help to overcome them and how it 

could be implemented at the company. In a final meeting the findings were presented and 

discussed with two developers (one different from the first meeting) and the project 

manager.  

 

Note that due to the short time frame, it was not possible to perform a full analysis of the 

software development processes at SSC and how the framework can be applied respectively 

how it needs to be modified for the use in the company. The discussion presented in the 

following sections should therefore be only taken as a first indicator on how VAMOS can be 

applied in an agile company and which problems might arise. A further analysis and 

adaption of VAMOS to agile environments is still subject to future work. 

 

5.1 Scrum 
 

SSC uses the Scrum software development process, which is an enhancement of the 

iterative/incremental development approach [SCH95]. In Scrum the software is iteratively 

developed in so-called sprints which typically take about 1-4 weeks. In each sprint a certain 

set of functionality, which is taken from a so-called backlog list, is developed and concludes 

with a release. Another major difference to traditional iterative development is that frequent 

reviews should be carried out to address risks and changes early on. A review should be held 

at least at the end of each sprint.  

 

5.2 SSC software development process 
 

SSC develops in sprints of typically four weeks. Within each sprint, a V-model approach is 

followed. The concrete activities that are performed within this V-model depend on the 

component that is developed and the stage in which the product resides. 

 

The software is usually divided into basic software (BSW), which consists of drivers and the 

on-board software (OBSW), and application software (ASW), which comprises components 

that reside on a higher application level like e.g. the ground control component (GNC). 

 

Although SSC strives for implementing cross-cut functionality from each level in one sprint 

for the future, the current situation is that in each sprint one or more components from the 

same level (e.g. the drivers) are developed. 
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A typical development process for a sprint looks as shown in Figure 45, which depicts the 

process for the GNC that accounts for the biggest part in a typical software project. Other 

components like the OBSW are developed similarly. 

 

 
Figure 45: Activities performed within a sprint at SSC 

 

In a first step, the requirements are gathered by prototyping the software and the architecture 

is outlined. This is not done in a specific order. The OBSW is developed without 

prototyping. Hence, the requirements are gathered directly and the architecture is developed 

in parallel to this requirements engineering process.  

 

When the prototype is finished and thus the requirements and the architecture are fixed, the 

implementation phase begins. The implementation follows a model-driven approach and is 

developed in Matlab/Simulink. The code is then generated automatically.  The models are 

developed using a test-oriented approach. Hence, the development of the modules and the 

unit-testing of the model are tightly coupled. The OBSW software on the other hand is 

developed in C. Since the unit test is done in an open loop, i.e. inserting certain inputs and 

analyzing the outputs, it is very difficult for SSC to find bugs by only performing unit tests. 

 

The implementation and unit testing phase follows an optional, informal code inspection, 

which is done depending on the component and module type. 

 

Several integration and system tests follow this activity to run the software in a closed-loop 

environment. The software is thereby run first in a simulated environment where the outputs 

of the software are fed into the simulators to produce the new inputs for the software system, 

thus forming the closed loop. The simulators are then replaced piece by piece with the actual 

hardware (i.e. original CPU, real sensors, etc.) to test the software in a more realistic 

environment. At the end the software is tested on the target satellite. 
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In the integration test, the software is simulated end-to-end. This activity follows the so 

called software in the loop system test (ST-SIL), which means that the closed-loop is 

simulated through software (e.g. in Matlab/Simulink).  

After that, the hardware in the loop system test begins (ST-HIL). Thereby, the software is 

run directly on the target processor and as many simulators as possible are removed and 

replaced with the actual hardware. 

In the end, the software is run on the target hardware in the satellite. In this activity, the 

closed-loop is simulated using the real hardware. The sensors are e.g. fed with currents so 

that they deliver real, physical data to the system.  

 

In the first few sprints, it is not yet possible to perform directly the whole set of testing 

activities up until the test on the satellite, partly because the software does not yet have 

enough functionality and partly because the satellite is not yet available. Thus the software is 

only tested up until ST-SIL in the first sprints. Only in the later sprints the ST-HIL testing is 

performed and the testing on the satellite is only done in the last sprints. Hence, in the first 

sprints the functionality is implemented and tested up until ST-SIL as depicted in Figure 46. 

Whereas in the later activities the implementation has been completed and only testing is 

performed in the sprints. The last sprints can therefore be seen as pure verification & 

validation sprints. 

  

 
Figure 46: Change of activities during sprints at SSC 

 

5.3 Discussion 
 

5.3.1 Situation at SSC 
 

As discussed in section 1.4 RUAG faces the problem that the later the faults are found in the 

process, the more expensive they are, as outlined by curve A in Figure 47. In contrast to this, 

SSC does not explicitly face the problem that the faults which are found later-on are more 

costly. SSC rather estimates the cost curve to be a linear one with a possible slight slope as 

illustrated by curve B.  
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Figure 47: Fault cost in time 

 

 

Another problem SSC is facing is the loss of knowledge through fluctuation of employees. 

This is especially problematic in agile environments, since it is tried to avoid extensive 

documentation. 

  

5.3.2 FST in iterative development 
 

There exist two kinds of fault-slip-through in the scrum development path. The first type is 

caused within a sprint, since a V-model like process is followed. A fault might e.g. slip 

through from the unit test to the integration test phase inside a sprint. 

The second kind of FST can happen between two sprints, where a fault could have been 

found in one sprint, but was found several sprints later. In the workshop at SSC, this second 

FST was considered possible, since the sprints are aligned to scenarios, and it sometimes 

happens that a defect was not detected within the first scenario, but in a scenario a few 

sprints later. 

 

5.3.3 VAMOS and MDD 
 

Model-Driven Development does not cause any problems for the usage of VAMOS, since 

SSC runs the test cases on the model. Thus for the applicability of VAMOS it does not 

matter whether the bugs are found in the model or in the actual source code.  

 

Regarding the collection of data, one of the biggest drawbacks might be caused by the 

informal communication that agile development strives for. Thus, it may be difficult to 

collect the necessary defect and cost data in an agile environment. 

 

5.3.4 Further benefits 
 

Since SSC estimates the costs to find & fix a defect to be more or less constant throughout 

the process, the company may not gain as much savings through a reduced FST as RUAG. 

Although this drawback diminishes the reason for introducing the framework within the 

company, an introduction of VAMOS holds other benefits. These benefits are described in 

the following and might also be applicable to other agile organizations. 

 

Measurements are introduced 

 

At the time of writing this report, SSC does its process improvement based upon expert 

opinion. Although this works out well for SSC, the value of improvements could be 

quantified by the measurements introduced through VAMOS. E.g. SSC currently considers 
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the introduction of model-based testing. Thereby, VAMOS could help to quantify the 

benefits of the model-based testing.  

  

Furthermore SSC already performs certain measurements, which are however not put into 

use for process improvement. SSC makes e.g. extensive use of a bug-tracking system and 

already reports several information. This defect data is however only used to make sure that 

all defects are fixed and to trace back changes. Thus, without much additional effort, the 

existing defect and cost data could be used as input for VAMOS to do quantifiable process 

improvement. 

 

Assumptions are validated 

 

SSC estimates the fault cost to be a rather linear. As FST is a major problem and also 

literature states that faults found after product delivery are often 100 times more expensive 

[SHU02], the VAMOS framework could help to validate this assumption or to reveal a 

hidden FST.  

 

Existing VAs are evaluated 

 

Another benefit of an introduction of the VAMOS framework is that existing VAs are 

evaluated against each other. E.g. does SSC occasionally perform informal code inspections. 

This is however not explicitly specified by the software process description, but rather based 

on the judgment of the developers. An introduction of VAMOS could help to analyze the 

benefits of a VA to judge if and when a VA should be done or not. 

 

Reduction of the verification & validation sprints 

 

As described in section 5.2, SSC uses the last sprints to further test the system. In these 

typically five to eight sprints no more additional source code is developed. VAMOS might 

help to reduce the number of verification & validation sprints and thus to reduce working 

hours allowing a faster software production. 

 

Early feedback 

 

Since SSC performs about 20 sprints per project with each sprint lasting maximum 4 weeks, 

an application of VAMOS could already give early feedback for process improvement after 

every sprint.  

 

Knowledge is externalized 

 

Since one of the problems SSC is facing is the loss of knowledge through fluctuation, an 

introduction of VAMOS could help to externalize the knowledge, so that process 

improvement can go on even if the developers change the department or company.  

 

5.3.5 VAMOS introduction at SSC 
 

An introduction of VAMOS requires SSC to introduce defect and cost measurements to 

provide the necessary inputs for the framework. The measurement options model described 

in section 3.5.2 allows SSC to derive and define the required measurement processes. 

Furthermore, since SSC already extensively uses defect measurements throughout most parts 

of its process as well as cost measurement, it should be possible to use these measurements 

for VAMOS.  

Additionally, SSC has to develop a fault classification which is adapted to their needs. This 

can be created following the process described in section 3.5.1. 
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6 DISCUSSION 
 

6.1 Comparison With Related Work 
 

This section discusses the relation of the VAMOS framework to the related frameworks 

which were introduced in section 3.2.  

 

6.1.1 Fault-slip-through 
 

VAMOS is mainly based on the concept of fault-slip-through by Damm et al. [DAM06] and 

as such tries to enhance the concept and to overcome the drawbacks.  

 

VAMOS uses the same measurement data as the FST, i.e. the defect data along with the 

information where the defect was found and where it could have been found. It describes 

however in detail how the measurement can be performed and what has to be measured. In 

particular, the RRC data are further outlined. 

 

The analysis is performed using the formulas of FST without modification. The only 

difference to FST is that the IP is calculated separately for each fault type. Although FST 

was used with fault types in [DAM05], they were only used in the analysis to decide on what 

to change. This was done by improving the fault group that had the most faults. This does 

however not necessarily mean that these faults were also the most expensive ones. Thus, in 

VAMOS the IP is calculated for each fault class to overcome this drawback. The 

disadvantage of this approach is however that not enough fault-slip-through data may exist 

for each fault type.  

 

Another drawback of FST is that no means are defined to derive improvements and evaluate 

them. VAMOS addresses this in the improvement phase. 

 

With the simplifications made in the alternative 2 (see section 3.7.1.2), the VAMOS 

framework is similar to the original FST as described in [DAM06]. 

 

6.1.2 Iterative selection strategy 
 

VAMOS is furthermore based on the iterative selection strategy by Wojcicki and Strooper in 

[WOJ07] and thus, similarities can be seen directly in the iterative process. Because the 

focus on ISS is to choose the best VAs out of a set of several VAs, it was designed for a 

different domain and company context (see section 3.2.2.1). Thus, VAMOS combines the 

FST with the basic idea of ISS to be more suitable for the space industry. The overlap factor 

of VAMOS therefore addresses the problem of overlaps between different VAs to keep the 

benefit of ISS. 

 

In Figure 48 the mapping of the VAMOS framework to the (simplified) activities of the 

iterative selection strategy is illustrated. VAMOS follows a similar iterative approach as the 

ISS and also starts with the measurement of the cost and effectiveness data. The activities 

that cannot be mapped 1:1 between ISS and VAMOS are displayed in gray. The overlap 

factor can be conceptually mapped to the minimize effort step of the ISS, since in both steps 

it is tried to remove VAs that find the same types of defects. Furthermore it also already 

includes an evaluation through the estimation of the benefits and can therefore also be 
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mapped to the preliminary evaluation step. In the last step the changes respectively the new 

set of VAs (ISS) are applied.  

 

 
Figure 48: Mapping of VAMOS activities to the ISS 

 

6.1.3 Wagner model 
 

The FST proposed by Damm [DAM06] does not clearly define the cost structure of VAs, 

that is, which costs related to a VA are taken into account for the FST calculation and which 

costs are left out. Therefore, a cost structure consisting of SEC and RRC was developed 

which is based on the Wagner model (cf. section 3.4.2). Furthermore, the calculation of the 

costs of a VA from the Wagner model was simplified to be used for the framework. The 

resulting model is used in the impact analysis of change proposals to calculate the overall 

costs of the VAs (cf. section 3.6.3.3).  

 

6.1.4 Continuous improvement frameworks 
 

Similar to the introduced QIP, Six Sigma, SEI Measurement Process and PDAC (see section 

3.2.1) VAMOS follows the typical iterative process. The VAMOS phases define, measure, 

analyze, improve and implement can conceptually be mapped to similar phases in the said 

process improvement frameworks.  

 

In contrast to the aforementioned frameworks, VAMOS‟ focus is not on general 

applicability, but on a specific context, namely the improvement of the cost-effectiveness of 

the VAs in the space industry. Hence, VAMOS defines concrete steps, formulas and 

guidelines to achieve this goal.  

 

6.1.5 GQM 
 

VAMOS relates to GQM in the sense that it can be seen as an instance of a GQM 

application. The goal is to provide a framework for the management and optimization of 

VAs. This can be refined into the sub goals and questions as defined in section 3.1.1. The 

metrics to answer these questions are the IP and OF as defined in section 3.6.2.2 and 3.6.2.3 
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6.2 Sensitivity Analysis 
 

The model described in chapter 3 contains the cost and the fault estimations as input factors 

and the improvement potentials, the overlap factor and the improvement gains as outputs. 

Since the input factors may vary in their accuracy, it is important to find out how the input 

factors affect the outputs of the model. The primary sources for inaccuracies are caused by 

effort reduction actions and measurement imprecision. 

 

Effort reduction 

 

As the total number of faults found in a VA can be more than thousand, it may be necessary 

not to measure all defects to reduce the measurement effort. As shown in section 3.6.1, this 

can be done through sampling & extrapolating or estimating the data. This obviously reduces 

the accuracy of the numbers. 

 

Measurement imprecision 

 

Furthermore the data may already be measured incorrectly due to human error or difficulties 

in the measurement procedures. Especially the measurement of the RRC may lead to 

problems in later stages of the process, since several people are involved and contribute to 

these costs. Also, defects are typically fixed in batches, i.e. several defects are fixed at once 

and are then committed, so that developer will not be able to accurately determine the time 

they spent on each defect.  

 

Because of these problems, it is important to know more about how the IP, OF and IG is 

influenced by the cost and effectiveness data. Therefore, a sensitivity analysis (SA) was 

performed that can determine which factors need more determination and which factors 

propagate the most variance in the outputs [SAL04]. 

  

The sensitivity analysis was performed using the tool SimLab [SIM09] and the model was 

implemented in Java. SimLab generates random values from a certain distribution, feeds the 

model with the values and uses the output values from the model to analyze the influence. 

SimLab provides several distributions. For this analysis however, only normal- and constant-

distributions were used. The deviations used in the normal distributions range from 1σ for 

VAs with a low number of faults to 3σ for VAs with a high number of faults. 

 

The mean values were based on the historic data obtained in the case study. Thus, the 

sensitivity analysis was performed using the data of project B and contains therefore realistic 

values. Sampled data was extrapolated and non-existing data, such as for I-VT, was 

estimated from the experiences gained in the interviews with RUAG representatives. Table 

26 shows the FST data and Table 27 the cost data that was used for the SA. 

 

AB/AF DR UT CI I-VT IT VT-TS AR 

DR 50 20 2000 100 1 1  

UT  110 500 500 1 1  

CI   3200 100 1 1 2 

I-VT    300 1 1  

IT     1 1  

VT-TS      0 1 

AR       0 
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 50 130 5700 1000 5 5 3 

Table 26: FST data for the sensitivity analysis 

 

 

 DR UT CI I-VT IT VT-TS AR 

RRC 4 4 4 30 30 80 80 

SEC 300 3600 1350 9000 150 300 120 

Table 27: Cost data for the sensitivity analysis 

 

To measure the effect on the IG, it was also necessary to define a fictitious change proposal 

that changes the fault distribution and the SEC. The change proposal improves the DR with 

respect to the faults that slip through to the I-VT phase. Therefore it is estimated that 50 

faults are found more in DR (i.e. simultaneously are 50 faults found less in I-VT) while the 

change proposal adds 100 hours to the SEC as shown in Table 28. 

 

 DR I-VT 

Faults found +50 -50 

SEC +100 +0 

Table 28: Modified data for the sensitivity analysis 

 

The analysis was performed using the Fourier Amplitude Sensitivity Test (FAST) method on 

approximately 100 000 samples. The result is illustrated in Figure 49.  

 

 
Figure 49: Sensitivity analysis results 

 

Basically, the higher the value of a factor the more influence it has on the output. Thus, as 

can be seen in the figure, the biggest influences on the IPs have the fault matrix and the 

RRC. Furthermore has the RRC the biggest influence on the IG.  

 

Analysis results 

 

The analysis of the SA results shows that the RRC has the biggest influence on the IPs 

whenever many faults slip through. Specifically the RRC of the VA where the faults slip to 

has therefore to be measured accurately. Whenever few faults slip through, the number of 

faults becomes more important. 

 

Another surprising result of the analysis is that for the IG, the RRC has a much higher 

influence on the outcome than the estimation of the future fault distribution. 
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If the RRC cannot be measured accurately or if doubts exist that the RRC is accurate enough, 

the IG should therefore be rather used as an indicator of the possible gain than as a hard fact. 

Another option to overcome this drawback and possibly gain a more accurate result is by 

calculating the IG with several, different RRC values and use the mean value, best or worst-

case scenario instead. 

 

6.3 General Discussion 
 

This section discusses the framework in general. In particular how the thesis objectives are 

accomplished, what the benefits and drawbacks of the framework are and how the 

framework was evaluated. Furthermore future work is outlined to point out which drawbacks 

exist and how they can be overcome to further improve the framework.  

 

6.3.1 Accomplishment of thesis objectives 
 

The goal and sub goals of this thesis project were established in section 1.6.1, along with the 

research questions and expected outcomes to fulfill these goals. In the following it is 

described how the research questions and expected outcomes are fulfilled in this thesis 

project.  

 

6.3.1.1 Research questions 

 

1. How can Fault-Slip-Through (FST) and Iterative Selection Strategy (ISS) be combined 

into a coherent framework? 

 

Conclusion: VAMOS is an iterative framework like ISS which uses the analysis methods of 

FST to derive improvements. It combines therefore the strengths of the ISS to reduce the 

overlap between VAs with the analysis methods of FST to derive cost-effective 

improvements. 

 

2. Which alternatives exist to the aforementioned models? 

 

Conclusion: Apart from ISS and FST a framework for the comparison of testing activities 

and formal verification exists [BRA06]. There exists also a more analytical approach for 

failure prediction [WAG06]  (cf. 0). Furthermore do general process improvement 

frameworks exist like QIP and Six Sigma, which were presented in section 3.2. 

 

3. Which measurements need to be done to support this framework? 

4. How can the framework support parameterization to include existing measures and thus, 

minimize the measuring effort to be real-world applicable? 

 

Conclusion: To support the framework, cost and effectiveness measurements have to be 

made (cf. section 3.4). The measurement options model (cf. section 3.5) provides a way to 

include existing measurements of these inputs measures if they fulfill the quality 

requirements imposed on the measurements. The different tracking options described allow 

for a minimization of the effort. 

 

5. How can the framework be adapted to a real-world industry setting by only doing 

minimal changes to the company‟s processes? 

 

Conclusion: The framework can be adapted to RUAG by applying the guidelines proposed in 

section 4.3.4. In general, the framework can be applied to a real-world industry setting by 
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following the MOM process (cf. section 3.5.2) to reuse existing measurements or to develop 

new lightweight measurements. 

 

6. How does the framework perform in a real-world industry setting? 

 

Conclusion: The framework was performed on the data of a historic project (cf. section 4.4) 

and first improvements could be identified that were confirmed by the team (cf. section 

4.4.3).  Although an evaluation on a current project could not be made due the short time 

frame of this research study, the analysis still showed the principle applicability in a real-

world setting. 

 

7. How can the framework be adapted to a more agile process?  

 

Conclusion: VAMOS can be applied in a similar way at SSC, by applying it to each sprint 

(cf. 5.3.2). Furthermore, the measurements can be developed for SSC in the same way as for 

RUAG (cf. 5.3.5). 

 

6.3.1.2 Expected outcomes 

 

In section 1.6.3 the outcomes were defined that were expected from this research study. The 

outcomes are fulfilled as follows:  

 

 The description of the framework is given in 3. 

 The process guideline for RUAG describing how the framework can be applied to 

their processes is outlined in section 4.3.4. 

 First validation results were obtained in an iteration of the framework on historic 

data (see section 4.4). 

 The list of recommendations for improving the RUAG development process as far as 

this was possible with the existing data is shown in section 4.4.3. 

 The description on the suitability of applying the framework in a more agile 

environment at SSC is given in chapter 5. 

 

6.3.2 Benefits 
 

This thesis project presented a framework for the management and optimization of the 

verification & validation. It allows managers to gain insight into the effectiveness (how 

many defects are found?) and the efficiency (how many defects are found per hour?) of a 

VA. And based on this, VAMOS allows the comparison of different VAs.  

 

VAMOS provides an iterative improvement process similar to continuous process 

improvement frameworks like QIP or Six Sigma (cf. 3.2.1) and therefore evidence-based 

process improvement that are based on measurements. In contrast to the traditional process 

improvement frameworks like QIP and Six Sigma which aim for general applicability, 

VAMOS provides concrete measurements and analysis methods to solve the specific 

problem of optimizing VAs.  

 

Since VAMOS is based on FST, it takes into account cost considerations. Therefore, it does 

not aim for just improving any VA, but for improving the VAs in the most cost-effective 

way. Additionally, it helps to find out which VAs do not find the faults they are supposed to 

find 

 

Furthermore, VAMOS provides an overlap factor to analyze whether two different VAs find 

the same kind of faults and it is more cost-efficient to remove one of the VAs (either 
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completely or only for a certain fault type). Although, it may not be possible to remove a VA 

because of the standards, this allows a company to show to its customers what the different 

VAs cost and what the cost for quality is.  

 

Therefore, VAMOS combines the benefits of the ISS, i.e. the optimization of the selection of 

VAs, with the benefits of the FST, i.e. the optimization based on the faults that cost the most.  

 

As mentioned before, VAMOS provides concrete recommendations on measurements, 

analysis and improvements. It allows for deriving measurement processes that require a low 

effort and in contrast to FST, VAMOS defines ways to derive the improvements from the 

analysis.   

 

Besides these benefits, VAMOS provides the further benefits as described in chapter 5.3.4: 

 

 Assumptions on the effectiveness of VAs and the FST between VAs can be 

validated 

 Existing VAs are evaluated and compared 

 Early feedback and reduction of the verification & validation sprints in agile 

environments 

 Knowledge is externalized 

 

6.3.3 Drawbacks 
 

The biggest drawback of VAMOS is that it requires several measurements. Although the 

MOM aims for measurements that require a low effort and different tracking options exist, 

this effort may be further be reduced. 

 

Furthermore does the framework require estimations to calculate the IG and OF. Thus this 

can lead to inaccuracies.   

 

Although VAMOS incorporates cost-considerations, it does not take into account intangible 

benefits when calculating the IPs or IGs. E.g. can a VA have a low IP and may therefore not 

be the focus of improvements, but due to long-term quality improvements, the customer 

relationship improves and thus the benefit may be higher than initially calculated.   

 

A further drawback is that the framework requires that the developer classifies the defects 

according to the VA where they could have been found and the fault type. Since this can 

result in errors, it may be necessary to adjust the fault types and retrain the developers from 

time to time. 

 

6.3.4 Evaluation 
 

The framework was first evaluated in a workshop with RUAG representatives to gain an 

initial feedback and improvement recommendations. Furthermore the framework was 

evaluated on the data of a historic project (see section 4.4). A dynamic evaluation, i.e. an 

evaluation on a current project, could not be performed due to the short time frame of the 

research and a lack of a suitable project at the time of this study. 

 

6.3.4.1 Static analysis (workshop) 

 

A workshop was conducted with the head of software development and a software project 

manager of RUAG. The goal of this workshop was to get an expert opinion on the feasibility 
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and usefulness of the framework. The workshop was conducted partly as an open interview 

and partly as a questionnaire. In the questionnaire part, the two participants were either given 

statements where they had to say if they strongly agree, agree, are uncertain, disagree or 

strongly disagree or had to answer questions. 

 

The representatives agreed with the following statements/questions: 

 

The framework will … 

 …give enough information about the problems to derive change proposals 

 …help to get a better understanding of the different VAs. 

 …help us to compare different VAs. 

 …help to reduce the overlap between the VAs 

 …reduce effort spent on Verification & Validation 

 

Apart from these statements in which both participants stated that they agree, further 

questions were answered and are summarized below: 

 

Do you think the measured cost data are accurate? 

 

The participants argued that the cost data might be a problem and that it is not clear which 

assumptions are ok when estimating and which have a huge influence. 

 

Do you think the measured effectiveness data will be accurate? 

 

The participants answered that it depends on the defect. It could especially be hard in later 

phases where the developers are not familiar with the early activities. However they 

estimated that it would be possible and correct in 90% of all defects. The participants also 

expressed the concerns that VAs are not always in the same order.  

 

Do you think the estimations for SEC, RRC and fault distribution will be accurate? 

 

The participants answered that it is hard to provide more than a guess. Analyzing historic 

data & pilot projects might help, but not in all cases. 

 

Do you think it will be difficult to use the framework at RUAG? 

 

The participants said that the full framework will be difficult but it will definitely be possible 

to use some parts of it. They also argued that if it is possible to get the support from the 

developers and they see the benefit, it is not a huge effort.  

 

How difficult will it be to use the framework at RUAG? 

 

Full framework will be difficult but parts of it definitely. They want to do some kind of 

measurement. 

 

Conclusion 

 

Although the static analysis has only limited validity because only two persons were 

involved and it was difficult to judge for them which results a framework application would 

produce in the future, it still gave useful insights and feedback.  

 

The static analysis revealed that the RUAG representatives are confident that the framework 

addresses the goals established in the initial meeting (cf. section 1.4). However they also 

expressed their concerns about the accuracy of data and that they don‟t know how inaccurate 

data will influence the outcomes of the framework application.  
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6.3.4.2 Iteration on historic data 

 

Because the evaluation on a current project was not possible, it was decided to use the data 

from a historic project to perform a first iteration (see section 4.4). Although several threats 

to validity exist to the correctness of the results (cf. section 4.4.5), the iteration served as a 

proof-of-concept by providing results that were confirmed by the team. 

 

6.3.4.3 Validation of the quality gates 

 

In two workshops the developed fault classification and the proposed measurement options 

were discussed with RUAG representatives (cf. section 4.3.1.3 and 4.3.2.3). Although the 

goal of these workshops was not to review and discuss the processes but the classification 

and the measurement options, the workshop showed that the processes produce useful results 

since only minor changes were made and the fault classification and measurement options 

were perceived positively. Further evaluation is however still necessary. 

 

6.3.5 Applicability to other industries 
 

The applicability of the framework to other industries and thus the possibility to generalize 

the thesis results has not been analyzed explicitly in this research. As the framework was 

developed for the Space industry, i.e. for industries that have high dependability and 

reliability requirements and develop embedded software of small size using a traditional 

process (waterfall or V-Model), it may however be also applicable to similar industries such 

as the automobile or aviation industry. Hence, a more thorough analysis still needs to be 

done and is therefore part of future work.  

 

6.3.6 Future work 
 

As the framework has only been validated in a workshop and on historic data, the next step 

is to perform a dynamic analysis. That is, to apply the framework on several projects over a 

larger time span to be able to judge whether VAMOS derives useful improvements and 

whether the defined improvements save time in future projects. Further evaluation needs also 

to be done in agile companies. 

 

Another future work is to develop tools that support the VAMOS framework application. 

This can be e.g. web based bug-trackers that implement the FST calculations and give the 

managers real-time information.  

 

Because the developers have to classify the defects according to the phase where they could 

have been found and the fault type, it is very likely that this classification is not always 

performed correctly and thus influences the analysis. Therefore, it may be necessary to 

constantly check that this classification is performed consistently, e.g. using the agreement 

factor as described in section 3.5.1.2. This means, that the agreement factor is constantly 

calculated (e.g. automatically through tools) and if it falls below a certain threshold, the fault 

classification is revised respectively the people are retrained to correctly classify the phase 

where the defects could have been found. 

 

In the impact analysis of the change proposal, a simplified version of the Wagner model was 

used. In particular, all manifestations of one defect in different software artifacts were 

considered as a single defect. It is therefore necessary to evaluate in how far these 
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simplifications may impact the analysis results and how these simplifications may be 

different for other companies.  

 

Further work needs also to be done in the improve and implement phases. In the improve 

phase, the root-cause analysis may be refined to help not only discover where the biggest 

problems are but also to efficiently find & solve them. In the implement phase, further best 

practices may be elaborated to support the implementation of change proposals. 

 

6.4 Summary 
 

This thesis presented a framework for the management and optimization of verification & 

validation activities (VAMOS) which was developed at the RUAG Aerospace Sweden AB in 

Göteborg.  

 

VAMOS follows an iterative approach similar to Six Sigma or QIP and is furthermore based 

on the concept of fault-slip-through presented in [DAM06] and the iterative selection 

strategy presented in [WOJ07]. Thus it combines the benefits of FST, i.e. to take into 

account cost-considerations to improve only the VAs with respect to the most expensive 

defects, with the benefits of ISS, i.e. to find the optimal and most cost-efficient combination 

of VAs. 

 

VAMOS consists of the process steps measure, analyze, improve and implement which are 

performed iteratively as well as a define process step, in which the goals of the company are 

set and trade-offs are discussed for tailoring the process steps.   

 

In the measure step, the effectiveness respectively defect data as well as the cost data is 

measured. The measured data is then analyzed using the concept of FST to find out which 

faults slip through and which of the faults are the most expensive ones. In the improve phase, 

adequate changes are then derived to address these problems and are further evaluated with 

respect to the benefit they produce. In the last step, the changes with the highest potential 

benefit are then implemented in the company.  

 

Since companies typically have some sorts of cost and defect measurements, but usually not 

in every phase of the software development lifecycle, it is desirable to reuse existing 

measurements and develop new ones for the phases that don‟t have one yet. VAMOS 

therefore defines a measurement options model that checks existing measurements if they 

fulfill the required quality standards (quality gate) and helps to develop new measurements. 

Furthermore, VAMOS describes another quality gate to help companies develop a defect 

classification if they don‟t have an adequate one yet. 

 

Using data of an historic project at RUAG, the framework was evaluated by performing a 

first iteration of it on this data and first indications could be given on how to improve the 

process. Another evaluation was done at the Swedish Space Corporation in Solna, to find out 

how the framework could be applied in an agile context. 

 

Conclusion 

 

This thesis contributes with a framework to evaluate and compare VAs according to their 

efficiency and effectiveness and allows for a process improvement that takes into account 

economic aspects. No such framework currently exists and previous work is either targeted 

at general process improvement or solves only parts of the problems. Specifically, it expands 

the concept of FST to an iterative framework that also defines how to derive improvements 
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and calculates the benefit of them. Furthermore it enhances the ISS by not only trying to 

have a minimal set of VAs, but also by trying to improve existing VAs. 
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Appendix A FAULT CLASSIFICATION 
 

A.1 Algorithm 

A.1.1 Description 

All code defects inside a method. 

A.1.2 Examples 

Name Wrong code Corrected code Description 

Condition If(x<10) { ... } 

 

x = 5; 

If(x<=10) { ... } 

 

if (y>x) { 

  x = 5; 

} 

Wrong 

 

 

missing 

Calculation int i = a + b; 

x = myArray[i]; 

int i = a + b -1; 

x = myArray[i]; 

Wrong calculation 

“HOW” 

descriptions of 

methods 

/* 

 * HOW: does A. 

 */ 

 

/* 

 * HOW: does A. 

 */ 

 

 

/* 

 *  

 */ 

/* 

 * HOW: does B. 

 */ 

 

/* 

 * HOW: does A then 

does B. 

 */ 

 

/* 

 * HOW: does B. 

 */ 

 

wrong 

 

 

 

 

missing functionality 

description 

 

 

missing HOW 

comment 

Local assigments function abc() { 

   x = a;  

   ... 

} 

 

function abc() { 

   x = 5;  

   ... 

} 

 

function abc() { 

   x = C_ABC;  

   ... 

} 

 

b(x); 

function abc() { 

   x = -a;  

   ... 

} 

 

function abc() { 

   x = 6;  

   ... 

} 

 

function abc() { 

   x = C_CDE;  

   ... 

} 

 

x = 4; 

b(x); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

missing (uninitialzed 

variable) 

Function calls a(); 

 

f(a, b); 

b(); 

 

f(b, c); 

wrong 

 

wrong parameters 

Local defines #define ABC 0x808 

 

#define ABC 0x909 

 

wrong 
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--- #define ABC 0x909 missing 

Local 

typedef/struct 

typedef struct { 

  double x; 

  double y; 

} point; 

 

 

typedef struct { 

  double x; 

  double y; 

} point; 

 

--- 

 

 

 

typedef struct { 

  double a; 

  double b; 

  double x; 

  double y; 

} sometype; 

   

typedef struct { 

  double x; 

  double y; 

  double z; 

} point; 

 

typedef struct { 

  int x; 

  int y; 

} point; 

 

typedef struct { 

  ... 

} 

 

typedef struct { 

  double a; 

  double b;  

} sometypeAB; 

typedef struct { 

  double x; 

  double y; 

} sometypeXY; 

 

 

wrong 

 

 

 

 

 

wrong 

 

 

 

 

missing 

 

 

 

 

 

change 

Local variables function abc() { 

   int16 x; 

   ... 

} 

 

function abc() { 

   int16 x; 

   ... 

} 

 

function abc() { 

   int32 x;  

   ... 

} 

 

function abc() { 

   int16 x;  

   int16 y; 

   ... 

} 

 

 

wrong type 

 

 

 

 

 

missing 

 

Statement order x = 2; 

b(x); 

 

c(x); 

a = 2; 

b(x); 

 

c(a); 

b(); 

 

 

b(x); 

x = 2; 

 

c(x); 

b(x); 

a = 2; 

 

c(a); 

a(); 

b(); 

Wrong order with 

functional influence 

 

 

Wrong order without 

functional influence 

 

 

 

missing statement 

 

A.1.3 Distinction to other classes 

 Understandability is naming of variables and wrong/missing comments inside 

methods; also unnecessary code. Everything that doesn‟t affect the functionality of 

the method. 

 Interface is concerned with the interface of a module (including the signature of a 

method) and thus is never concerned with the inner algorithms of a method. 
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 If the condition is used to check whether a parameter is within the allowed range, the 

defect is classified as Robustness 

 typedefs and defines that are only used locally belong to Algorithm, global typedefs 

and defines, e.g. from the design document, belong to Interface 

 

 

 

 

A.2 Interface 

A.2.1 Description 

Defects related to the interface of a module. 

A.2.2 Examples 

Name Wrong code Corrected code Description 

WHAT 

description 

(module header 

and method) 

/* 

 * WHAT: does A. 

 */ 

 

/* 

 * WHAT: does A. 

 */ 

 

 

/* 

 *  

 */ 

/* 

 * WHAT: does B. 

 */ 

 

/* 

 * WHAT: does A and 

B. 

 */ 

 

/* 

 * WHAT: does B. 

 */ 

 

wrong 

 

 

 

missing functionality 

description 

 

 

 

missing WHAT 

comment 

Includes #include abc.h 

 

#include abc.h 

 

#include def.h 

 

#include abc.h 

#include def.h 

wrong 

 

 

missing 

Global defines #define ABC 0x808 

 

--- 

#define ABC 0x909 

 

#define ABC 0x909 

wrong 

 

missing 

Global 

typedef/struct 

typedef struct { 

  double x; 

  double y; 

} point; 

 

 

typedef struct { 

  double x; 

  double y; 

} point; 

 

--- 

 

 

 

typedef struct { 

  double a; 

  double b; 

typedef struct { 

  double x; 

  double y; 

  double z; 

} point; 

 

typedef struct { 

  int x; 

  int y; 

} point; 

 

typedef struct { 

  ... 

} 

 

typedef struct { 

  double a; 

  double b;  

wrong 

 

 

 

 

 

 

 

wrong 

 

 

 

 

missing 

 

 

 

 

 

change 
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  double x; 

  double y; 

} sometype; 

   

} sometypeAB; 

typedef struct { 

  double x; 

  double y; 

} sometypeXY; 

global variable int16 x; 

 

int16 x; 

 

int32 x; 

 

int16 x;  

int16 y; 

wrong type 

 

missing 

 

Operation 

signatures 

void abc(); 

 

void abc(); 

 

int abc(int16 x); 

int abc(); 

 

void abc(int x); 

 

int abc(int32 x); 

wrong 

 

missing 

 

wrong 

 

A.2.3 Distinction to other classes 

 Understandability: rename of typedefs, structs, defines for better understandability.  

 Algorithm: inside a method. 

 Robustness: const and usage constraints go to robustness.  

 Global typedefs and defines, e.g. from the design document, belong to interface. 

locally  used typedefs and defines belong to Algorithm. 

 

A.3 Robustness 

A.3.1 Description 

Everything that is done in order to prevent failures in abnormal circumstances. 

A.3.2 Examples 

Name Wrong code Corrected code Description 

usage 

constraints at 

module/method 

level 

/* 

 * USAGE 

CONSTRAINTS: 

trajectory length > 0 

 */ 

 

/* 

 * USAGE 

CONSTRAINTS: 

trajectory length > 0 

 */ 

 

 

/* 

 * USAGE 

CONSTRAINTS: 

pointer is not null 

 */ 

/* 

 * USAGE CONSTRAINTS: 

trajectory length >= 0 

 */ 

 

 

/* 

 * USAGE CONSTRAINTS: 

trajectory length > 0 

trajectory length < 50000 

 */ 

 

 

/* 

 * USAGE CONSTRAINTS: 

none 

 */ 

 

wrong 

 

 

 

 

 

 

 

missing 

usage 

constraint 

 

 

 

 

unnecessary 

usage 

constraint 

 

missing const int x; const int x;  
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asserts assert(x>0); 

 

/* 

 * USAGE 

CONSTRAINTS: 

trajectory length > 0 

 */  

function abc(double 

tl) { 

... 

} 

 

 

/* 

 * USAGE 

CONSTRAINTS: 

none. 

 */  

function abc(double 

tl) {  

assert(tl>0); 

... 

} 

assert(x>=0); 

 

/* 

 * USAGE CONSTRAINTS: 

trajectory length > 0 

 */ 

function abc(double tl) { 

assert(tl>0); 

... 

} 

 

 

 

/* 

 * USAGE CONSTRAINTS: 

none. 

 */  

function abc(double tl) {  

... 

} 

wrong 

 

 

 

missing 

 

 

 

 

 

 

 

 

 

 

 

 

 

unnecessary 

boundary 

checks 

arr[arra_current] = 2; 

 

 

 

 

If(param1<= 256){ 

 

If(param1< 256){ 

 

 

/* x < 127 */ 

 

 

if (array_current<=array_max) { 

arr[arra_current] = 2; 

} 

 

 

If(param1< 256){ 

 

If(param1< 128){ 

 

 

/* x < 128 */ 

Missing 

 

 

 

 

wrong 

 

 

wrong 

 

 

Comment 

wrong 

(wrong 

range) 

 

A.3.3 Distinction to other classes: 

 Interface: Robustness is only about usage constraints. 

 Algorithm: Robustness is only asserts and boundary/range checks.  

 

 

A.4 Timing/concurrency 

A.4.1 Description 

Issues related to concurrency and compliance to timing requirements. 

A.4.2 Examples 

Name Wrong code Corrected code Description 
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concurrency 

protection 

a(); semaphore 

a(); 

semaphore 

missing 

delayed 

writes 

mov %l0, %wim  

 

mov %l0, %wim  

nop 

nop 

nop 

missing 

 Timing requirements not fulfilled 

 Re-entrancy (usage constraints + code errors) 

 Priority of tasks is wrong.  

 Errors in the use of the resource management (buffer pool) 

 

A.5 Hardware interface 

A.5.1 Description 

Issues related to the interface between hardware and software. “Hardware” here refers not to 

processors, etc, but to the developed, external hardware. 

A.5.2 Examples 

Name Wrong code Corrected code Description 

 Inconsistencies to actual hardware (e.g. hardware has more pins that the 

developer thought) 

 Read/wrote wrong external hardware registers 

Hardware documentation 

 manual is wrong: 

o  insufficient description (side effects),  

o timing constraints in HW 

 

A.5.3 Distinction to other classes 

 All: hardware is always chosen over other classes (see hierarchy) 

A.6 Understandability 

A.6.1  Description 

Issues that are related to understanding the source code, including comments, without 

functional impact. 

A.6.2 Examples 

Name Wrong code Corrected code Description 
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Naming of 

identifiers 

int uselessIdentifier; 

 

const int abc = 0x808; 

int betterIdentifier; 

 

const int C_ABC = 0x808; 

 

 

conding 

standard 

Code comments  clarification and/or additional information regarding the description in 

the comment 

 or comment totally missing 

module/method 

descriptions  

 clarification and/or additional information regarding the description in 

the comment 

 or comment totally missing 

 Dead code 

 

A.6.3 Distinction to other classes 

 Algorithms: anything that doesn‟t in any way change the functionality, e.g. “x=x;” 

go to understandability 

 

A.7 Beautification 

A.7.1 Description 

Issues regarding code formatting and comment style. 

A.7.2 Examples 

Name Wrong code Corrected code Description 

 typos 

 language grammar problems 

 code/comment alignment (indentation) 

 

A.7.3 Distinction to other classes 

 typos and language grammar issues that can NOT lead to misunderstandings go to 

beautification; others go into understandability 

Missing plural endings e.g. go to understandability 

A.8 Hierarchy of classes 
 

Sometimes it might be that a fault might fall into different categories. Therefore, this 

hierarchy is provided, which is built up considering RUAG priorities. 

Beautification (i.e. Typos, grammar errors) get the highest priority, so that a typo error in a 

How description (interface) or in a usage constraint description (robustness) is not associated 

with the high severity that robustness or interface defects might cause. 

 

1. Hardware Interface 
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2. Timing/Concurrency 

3. Interface <-> Algorithm (are orthogonal)  

4. Robustness 

5. Understandability 

6. Beautification 

 

When in doubt, always choose the class that is higher in the hierarchy. 
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Appendix B UNIT TEST INTERVIEW 
 

B.1 Questions 
 

1. For how many months/years have you done unit testing? 

2. Do you start to execute the test cases while implementing or at the end? 

3. Do you find defects with unit testing after the first code inspection? 

4. What kinds of fault do you find? 

5. How long does it usually take to create a unit test script (for one module / for one 

function)? 

6. How often do you execute the unit tests? 

7. If a unit test fails, how is the approx. ratio in % between test case wrong and code 

wrong? 

8. How long does it usually take to adapt a test case? 

9. How long does it usually take to find and fix one defect in the source code? 

10. How would you grade the unit test activity in terms of effectiveness of finding 

defects on a scale from 1 (Very good) to 5 (Very bad)? 

 

B.2 Interview & shadowing session results 
 

Question I1 I2 I3 I4 S1 S2 Conclusion 

/Average 

1 1.5 years 1 year 10 years 2 years 2-3 

months 

2-3 

months 

2.5 years 

2 End 

Depends 

on 

complexity 

End 

Dedicated 

unit tester 

During  End End End Mostly at 

the end 

3 Yes,  

2-3 faults / 

50 odules 

Yes 

1 fault / 

module 

No No N/A N/A Almost no 

faults 

4 See table 

below 

See table 

below 

See 

table 

below 

See 

table 

below 

   

5 4-8h 4-8h 2h-2w 

2-3d 

avg 

1/3 of 

dev 

time 

2d per 

1w 

module 

--- 

 

~30 

miutes 

per 

function 

Avg 1-2d / 

module 

6 -During CI 

-Before 

delivery 

-Some-

times 

during 

Dev. 

-On 

developer 

request 

1-2 faults 

/ module 

-During 

CI 

-Before 

delivery 

1-2 

faults /  

module 

-During 

CI 

-Before 

delivery 

<<1 

fault / 

module 

2 faults  

found 

in the 

module 

No 

faults 

found 

~1 fault / 

module 
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Cannot say 

how many 

faults / 

module 

7 80-90 : 

 20-10 

80:20 95:5 95:5 ~80:20 ~95:5 90-95% TC 

wrong 

8 30m-60m 15m-60m 5m 5m ~5m ~5m ~15m 

9 --- --- 5m 5m 8m --- ~5m 

10 2 3 3 4.5 --- --- ~3.1 

Table 29: Summary of interview & shadowing session results 

 

 

Fault Often Sometimes Never Notes Fault class 

Faults described by the participants  

Uninitialized 

variables 

X X    Algorithm 

Miscalculated 

index (in array 

e.g.) 

X    Algorithm 

Logical errors X X    Algorithm 

Boundary, ranges X X X   Robustness 

Other fault types (asked by the interviewees  

wrong conditions X X X X  Often Algorithm 

assignments X X X X Often Algorithm 

function calls  X X X X Never Algorithm 

wrong statement 

order 

 X X X X Very 

few 

Algorithm 

casts  X X X X Never Robustness 

asserts   X X X Never Robustness 

usage constraints  X X X X Never Robustness 

hardware 

problems 

  X X X X Never Hardware interface 

concurrency   X X X X Never Timing/Concurrency 

timing   X X X X Never Timing/Concurrency 

Table 30: Recognized fault types in UT by interview participants 

 

Summary of important comments per question 

 

2) Do you start to execute the test cases while implementing or at the end?  

- If the module is complex, one function is implemented and tested at a time 

- UT responsible recommends UT as debugging 

- UT is not a very interesting activity 

 

4) What kinds of fault do you find? 

- Problems with the simulator 

- “UT is more a check that everything has been covered.” 
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7) If a unit test fails, how is the approx. ratio in % between test case wrong and code wrong? 

- Script language wasn‟t straight forward, i.e. it took some time to learn Cantata 

- Developer changes SW while developing in parallel, i.e. the TC is always one step behind.  

(Dedicated Unit Tester) 

 

8) How long does it usually take to adapt a test case? 

- Change structure can lead to an almost complete rewriting of the test case (~ ½ day of 

work) 

- Typical way of work is copy & paste a TC and adapt values. 

 

10) How would you grade the unit test activity in terms of effectiveness of finding defects on 

a scale from 1 (Very good) to 5 (Very bad)? 

-Extra work forces you to work better 

-While developing the TCs and looking at the code, one finds errors in the code. 

-Depends on the skill of the developer, if the developer is skilled, very few bugs are found. 

-Good if used as debugging, worse when using at the end and almost useless in case of 

dedicated unit tester 

-Quite bad ability to find defects 

-The way to guarantee 100% coverage 

-UT is also sometimes used after CI (even less faults) 

-Not useful for this type of software (low level, not complex software), more useful maybe 

for bigger systems 

-Wouldn‟t use UT for this kind of software if it wasn‟t demanded by the customer 

-Could find maybe more defects if it was used more like a black box testing approach, but is 

difficult since one needs to know the inner structure to create the test cases  Hard to make 

UT efficient 

-Not our best tool to find defects  
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GLOSSARY 
 

(F-)IT Formal Integration Test 

(F-)VT-TS Formal Validation Test against the Technical Specification 

(MOM-) DEMO Defect measurement options model 

(MOM-) SECMO Setup & execution cost measurement options model 

AB Activity to which a defect belongs-to, i.e. the VA from which the defect 

slipped through. Essentially the same as PB.  

ADC Adaptive defect classification 

AF Activity in which the defect was found, i.e. the VA to which the defect 

slipped to. Essentially the same as PF. 

AR Acceptance Review 

CI Code Inspection 

CP Change proposal 

DDR Detailed Design Review 

DR Design Review 

ECSS European Cooperation for Space Standardization 

FST Fault slip through 

FT Fault type 

IG Improvement gain 

I-IT Informal Integration Test 

IP Improvement potential 

ISS Iterative Selection Strategy 

I-VT-TS Informal Validation Test against the Technical Specification 

MOM Measurement options model 

OF Overlap factor 

PB Phase to which a defect belongs-to, i.e. the VA from which the defect 

slipped through 

PF Phase in which the defect was found, i.e. the VA to which the defect 

slipped to 

RRC Removal & regression cost 

SEC Setup & execution cost 

TC Test case 

TRR Test Readiness Review 

UT Unit Test 

VA Verification & Validation Activity 

VT-RB Validation Test against the Requirements Baseline 

X-CI External Code Inspection 

X-DDR External Detailed Design Review 

X-DR External Design Review 
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X-VT  External Acceptance Review 
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