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ABSTRACT 
 

 

 

Manually creating test cases is time consuming and 

error prone. Search-based software testing (SBST) can 

help automate this process and thus to reduce time and 

effort and increase quality by automatically generating 

relevant test cases. Previous research have mainly 

focused on static programming languages with simple 

test data inputs such as numbers. In this work we 

present an approach for search-based software testing 

for dynamic programming languages that can generate 

test scenarios and both simple and more complex test 

data. This approach is implemented as a tool in and for 

the dynamic programming language Ruby. It uses an 

evolutionary algorithm to search for tests that gives 

structural code coverage. We have evaluated the system 

in an experiment on a number of code examples that 

differ in complexity and the type of input data they 

require. We compare our system with the results 

obtained by a random test case generator. The 

experiment shows, that the presented approach can 

compete with random testing and, for many situations, 

quicker finds tests and data that gives a higher 

structural code coverage. 

 

Keywords: Search-Based Software Testing, automatic 

test data generation, dynamic programming language, 

object-oriented 
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Abstract

Manually creating test cases is time consuming and er-
ror prone. Search-based software testing can help auto-
mate this process and thus reduce time and effort and
increase quality by automatically generating relevant
test cases. Previous research have mainly focused on
static programming languages with simple test data in-
puts such as numbers. In this work we present an ap-
proach for search-based software testing for dynamic
programming languages that can generate test scenar-
ios and both simple and more complex test data. This
approach is implemented as a tool in and for the dy-
namic programming language Ruby. It uses an evolu-
tionary algorithm to search for tests that gives struc-
tural code coverage. We have evaluated the system in
an experiment on a number of code examples that differ
in complexity and the type of input data they require. We
compare our system with the results obtained by a ran-
dom test case generator. The experiment shows, that the
presented approach can compete with random testing
and, for many situations, quicker finds tests and data
that gives a higher structural code coverage.

1. Introduction

The development of software products is a compet-
itive activity and the time available to bring a product
to market is often limited. Furthermore, the complexity
and size of software systems have increased in recent
years. In order not to fail on the market, it is important
to also achieve a high quality. Together, these trends put
big demands on development organisations; they need
to develop more and larger systems quicker. This is

often especially challenging for activities focusing on
increasing quality, e.g. software testing.

Search-based software testing (SBST) can reduce
time and effort by automatically generating relevant and
adequate test cases. SBST has been successfully ap-
plied in previous studies, especially in structural test-
ing [5, 7, 10, 15]. Although previous studies have
shown the applicability of SBST to generate test cases
for structural testing, they were often limited to simple
types of input data, such as numerical values. Num-
bers are a very common input data but there are many
other input data types that are frequently used, espe-
cially in object-oriented programs. Often parameters
are objects themselves that maintain an internal state,
or are complex and compound data structures that re-
quire an appropriate initialisation of data. In such sit-
uations, the generation of test data to pursue a specific
goal, becomes much more complex than it is for simple
numerical values.

Another aspect is the generation of test cases for
dynamic languages, which have grown in popularity in
recent years. A dynamic language is a high-level pro-
gramming language that allows a program to change
its behaviour dynamically at runtime. Often they are
not strict on the type of objects that are sent as argu-
ments or produced in method invocations. Thus, it is
possible to change parts of a program while the sys-
tem is still running and to adapt software systems more
easily [11]. Furthermore, dynamic languages are often
seen as very flexible and productive. In previous re-
search, SBST tools were developed for mostly statically
typed languages, such as C/C++ [9] and Java [13]. To
our knowledge, SBST has not yet been applied to a dy-
namic programming language and it is not known how
SBST can be adapted for this.

In this paper we introduce RuTeG (Ruby Test case



Generator), a tool written in Ruby that can create test
cases for Ruby source code. The goal is the automatic
generation of test cases to achieve full statement cover-
age. In this paper we focus mainly on two aspects:

• How can SBST be applied on a dynamic program-
ming language for test case generation?

• How can different test input data, such as objects
and complex data structures, be generated?

This paper is structured as follows. Section 2 gives
background information on Ruby, genetic algorithms
and structural coverage. Section 3 presents related
work. Section 4 introduces the ruby test case genera-
tor RuTeG, and its components. Section 5 describes the
experiment, while Section 6 contains the results. Sec-
tions 7–8 end the paper with discussion and conclusion,
respectively.

2. Background

2.1. Ruby

This study is focused on the test case generation
for dynamic languages. One such dynamic language
is Ruby [12], which has continued to grow in popular-
ity in recent years. Ruby is a fully object-oriented lan-
guage, which means that everything is an object, includ-
ing primitive types such as bytes, integers, booleans and
chars. Another interesting feature of Ruby is ‘duck typ-
ing’. Objects are described by what they can or can not
do, instead of being associated to a specific type. There-
fore the interpreter does not care what type the data is,
but only if it can be used in a given context. Finally,
a further characteristic is the reflective ability of Ruby,
which means that much information about the code it-
self is accessible during runtime. These features make
Ruby an attractive programming language, however it
may also complicate the search for adequate test cases,
because of its dynamic nature [18].

2.2. Genetic algorithms

The genetic algorithm (GA) is an example of an
evolutionary algorithm and is a heuristic search tech-
nique that is inspired by Darwin’s evolutionary the-
ory [5]. The basic idea of the algorithm is to start with
a randomly initialized population of individuals. Each
individual is a potential candidate solution of a given
problem. A fitness function is used to evaluate the ad-
equacy and quality of each individual. After this, a se-
lection process, which is biased towards the fitness as-
sociated to each individual, extracts a subset from the

Termination 
criterion

Random init 
of population

Combination

Start/Stop

Mutation

Evaluate 
individuals

Selection

false

true

Figure 1. Flowchart of a genetic algorithm

current population. This means that fitter solutions are
more likely to be selected. These selected individuals
are combined to form a new generation of population.
The combination is usually done through a crossover
operation, which takes two individuals and exchanges
their information at a random selected position. Often a
mutation process is applied, to prevent that individuals
become too similar and thus that the population freezes.
The mutation operation modifies randomly some infor-
mation of a selected individual. After the generation
of a new population, each individual is evaluated again,
and the process is repeated, until a specific termination
criterion is fulfilled. Figure 1 shows the flowchart of a
simple genetic algorithm.

2.3. Structural coverage

Structural coverage is an indirect measure of test
quality. It can be used to identify areas of code that is
not covered by test case scenarios. If parts of the source
code remain uncovered, means that it was not tested.
Therefore the current set of test cases should be ex-
tended. On the other hand, full coverage does not guar-
antee the correctness of the code. There are many differ-
ent coverage criterions, whereas some are more power-
ful than others. Probably the best known are statement
coverage, decision or branch coverage, modified con-
dition/decision coverage, multiple condition coverage,
and path coverage.



3. Related work

This section gives an overview of previous work in
search-based software testing, especially for the auto-
matic generation of test cases for structural testing.

3.1. Search-based test data generation

Jones et al. [5] have developed an automatic test
data generator in Ada83 using GA to search input data
to achieve full branch coverage. The input variables,
that form the individuals of the population, are encoded
into a concatenated bit string, on which search opera-
tions are applied, to create new generations. In order to
fulfill the search goal and thus to reach all branches, the
system moves in a breadth-first order within a control
flow tree, from one branch to the next. To determine the
suitability of an individual for each sub-goal, the au-
thors use two different approaches based on the branch
distance level, namely the Hamming distance and a sim-
ple numerical reciprocal function.

Pargas et al. [10] used an alternative implementa-
tion of GA to achieve full statement and branch cover-
age. The implemented tool TGen was written in the C
programming language. Unlike in the work of Jones et
al. [5], their evaluation is based on the control depen-
dency graph. Further the individuals of the population
are represented in its natural solution space, without ap-
plying any binary encoding. Thus each individual is a
set of values according to the number of input variables.

GA is only one of many heuristic search techniques
that were used to search for adequate test data. Previ-
ous studies have used a number of different search algo-
rithms, such as gradient descent [6], simulated anneal-
ing [14], tabu search [3], immune genetic algorithm [2],
particle swarm optimisation [21], to name but a few.

Some studies were focused on the comparison of
different heuristic search techniques. Michael et al.
[8, 9] have developed a tool in C/C++ called GADGET,
to generate test data for condition-decision coverage.
The evaluation of test cases is based on a simple branch
distance measure. The search methods supported by
GADGET are, random testing, gradient descent, sim-
ulated annealing, genetic algorithms, and differential
genetic algorithms. The tool was tested on a number
of projects, to determine strengths and weaknesses of
different search techniques. The results showed that
in most cases heuristic search techniques perform very
well, while random testing fails to reach specific targets.

Harman and McMinn [4] conducted an empirical
study, comparing random testing, hill climbing, and ge-
netic algorithms on a number of test projects, with dif-
ferent size in terms of line of codes. The goals of the

study were to determine when evolutionary algorithms
are suitable and the performance, compared to other
search techniques. The fitness function used in their
study for the test case evaluation is a combination of
approximation and distance measure. The outcome of
the study showed that evolutionary algorithms are suit-
able in many situations when it comes to the genera-
tion of input test data for structural testing, whereas
in some cases simpler search techniques perform sur-
prising well, and are able to surpass evolutionary algo-
rithms.

The efficiency of the search depends not only on
the used algorithm. Also the quality of the fitness func-
tion contributes to the success rate. It expresses the
‘goodness’ of test cases in a numerical value, and is
used to guide the search. Watkins and Hufnagel [19]
compared in their work different fitness functions that
were used in previous studies. They divide the fitness
functions in two major categories, namely approxima-
tion level (or control-oriented approaches), and distance
level (or branch-oriented approaches). The first, ap-
proximation level, is an indicator about how close the
actual path taken, deviates from the target sub-goal.
The fitness function used by Pargas et al. [10] falls into
this category. The second, distance level, examines the
branch node and gives information about how close the
test case was, in order to fulfill the branch condition.
The fitness function used by Jones et al. [5], falls into
this category. Some fitness functions are also a combi-
nation of approximation and distance level. Examples
for that are the fitness functions proposed by Wegener
et al. [20] and Tracey et al. [15].

3.2. Test data generation for complex input
data

To the best of our knowledge, there are only few
studies which are related to the generation of non-
numerical input data. Zhao and Li [22] have developed
an automatic test data generator in C/C++ for dynamic
data structures. They divide pointer operations into four
possible categories, namely assignment, creation, dele-
tion and comparison statements. The comparison be-
tween pointer values is further categorized into equal
and unequal conditions. An assistant table is maintained
to keep track of the current values and constraints of
pointers. Thus, along the search path, pointers are mod-
ified to satisfy predicate conditions, as long they do not
violate any constraints kept within the assistant table.
This approach was tested on a small number of test pro-
grams, which showed its applicability. However, this
approach is limited on simple dynamic data structures,
such as binary trees.



Alshraideh and Bottaci [1] focused on the test data
generation to cover branches with string predicates.
They address in their study string equality, string or-
dering and regular expression matching. They applied
a fitness function that depends on the string predicate.
Thus, for string equality they use the binary Hamming
distance, character distance, edit distance, and string
ordinal distance, while for string ordering, the ordinal
value method and single character pair ordering is ap-
plied. The search for adequate test data is done using
a GA. To improve the efficiency of the search, the in-
put domain is restricted to characters within an ordinal
range from 0 to 127. Further the solution candidates
are biased towards string literals that appear within the
program under test. The experiment done in their study
shows that the most effective result for string equality
was obtained using the edit distance fitness function,
while no significant difference was found in the fitness
function for string ordering.

3.3. Test case generation for object-oriented
programs

Tonella [13] presented one of the first approaches
that applied search-based software testing to object-
oriented programs for structural testing. GA was used
in the study to generate an adequate sequence of object
creation and method invocation, in order to maximise
a given coverage criterion. The main focus lied on the
generation of a method call sequence, while input pa-
rameters were randomly generated. The most important
role was the mutation phase of test cases, which was
categorised into different parts, namely the mutation of
input value, constructor change, insertion/removal of
method invocation, and one-point crossover. The pre-
sented solution was tested on a set of code examples,
and showed that GA’s are suitable to generate test se-
quences for object-oriented programs.

Wappler and Wegener [17] introduced, in their con-
tribution, a new type of fitness function (when it comes
to object-oriented programs), namely the method call
distance. It penalises test cases which terminates pre-
maturely in a sequence of method calls, because of a
possible runtime exception. Such test cases are not able
to reach the method under test, and therefore not to con-
sider as a potential test case solution.

In another contribution, Wappler and Wegener [18]
used strongly typed genetic programming to guarantee
the feasibility of generated test cases. Feasibility in this
context refers to the method call sequence, which guar-
antees that a method is only invoked after the creation
of its object. The idea of the solution is based on a

Source code Analyser

Test case 
generator

Data input 
generator

Test scenarioTest case 
executor

Figure 2. Basic structure of RuTeG

method call dependency graph, which is a bipartite, di-
rected graph with methods on one side and classes on
the other side. A link from a method to a class means
that the method can only be called, after an instance
of the class is created, while a link from a class to a
method means that an instance of a class is created or
delivered by the method. Using GA and the method call
dependency graph, a set of test cases were generated to
achieve full branch coverage. The fitness function con-
sisted of a composition of distance level, approximation
level and method call distance.

Finally, Wappler and Schieferdecker [16] described
a method to generate test cases for maximising branch
coverage for non-public methods. Their idea is to start
with a static code analysis to identify call points, which
are method invocations to non-public methods. This in-
formation is then used to generate test cases that are re-
warded by the fitness function if they are able to reach
a call point, and penalised in case that they miss its tar-
get. Their solution is built on the test case generator
presented by Wappler and Wegener above.

4. The Ruby test case Generator

In this section we introduce the tool RuTeG, an au-
tomatic test case generator for Ruby. Figure 2 shows
the basic structure and the main components of the tool.

The system starts by receiving the input source
code and a selected class under test (CUT). Having
these prerequisites, the analyser loads dynamically the
CUT and searches for useful information that is needed
for the test case generator. The test case generator pro-
duces a set of test individuals, by forming a sequence
of object creations and method invocations. The in-
put data for the parameters are generated using the data
generator. After a complete initialization of individual
test cases, they are executed on the program under test.
From this, the test case generator receives feedback that



influences the successive steps of the search. Once the
search goal is achieved, the tool delivers the set of test
case scenarios.

4.1. Analyser

The analyser extracts information that is used later
in the process to generate and adapt test cases. Since
Ruby is a reflective and dynamic language, the analyser
focuses on performing its task at runtime, and does only
a minimum of static code analysis. This means that the
CUT is loaded dynamically into the system and inves-
tigated. The analyser delivers a CUTInfo object, that
contains information about the constructor and its argu-
ments. Further it maintains a list of methods that are de-
clared within the target class. Every method becomes a
method under test (MUT), and thus it is associated with
a MUTInfo object. This in turn contains information
about the MUT, such as its argument list, and the meth-
ods invoked for each single argument. Furthermore it
keeps track of the coverage achieved during the search
process in addition to the adequate or disqualified data
generators.

4.2. Data generator

Data generators produce input values that are
passed as arguments to method invocations. Finding ap-
propriate data is a very important although difficult task.
There is a large set of possible input types and also the
domain of input values for a specific type can be quite
large. Since it is difficult for a single data generator,
to cover all the different possibilities, a major design
decision was to have different generators for specific
problems. This gives the user the flexibility to define
new generators that can produce context relevant data.
Hence, the set of data generators must be modifiable, by
adding or removing user defined generators. This how-
ever requires a common shared interface, such that the
application can independently run, without changing its
behaviour for each generator.

Having problem specific data generators, improves
also the search for adequate test values. Let us suppose
that we have a method that takes a String as input and
checks then whether it is a valid ISBN code or not. If
we apply a simple String generator, which randomly
produces any sequence of character, then it will be very
difficult, if not impossible, to find a valid ISBN string.
On the other hand, if we define a String generator,
that produces only values according to a predefined pat-
tern, then the success rate to find a valid input value will
increase.

A further advantage of having multiple data gen-

erators for specific problems, is that they can be easily
combined to produce more complex data. For example,
a generator that produces an array, could use a posi-
tive Fixnum generator to define the size, and then fill it
with random data of a specific type with other existing
generators. This array generator in turn could be used
again to produce nested arrays.

4.3. Test case executor

Generated test cases are executed, to obtain infor-
mation such as the code coverage. The test case execu-
tor keeps track of the coverage achieved by previous test
scenarios. Therefore it is possible to determine, whether
the current test case contributes to the code coverage,
and thus if it will be part of the final set of test scenar-
ios.

Test cases are divided into three major parts,
namely the constructor, the sequence of method calls to
modify the state of an object, and the invocation of the
current method under test. In case that the execution of
a test scenario leads to an exception, it is possible to de-
termine the responsible part. This is done to prevent a
false evaluation in the search process.

4.4. Test case generator

The test case generator is the core of RuTeG and is
responsible for producing test scenarios. There are two
major tasks, namely to find appropriate input values and
to form a reasonable sequence of method invocations.
Both are something that can not be done right away. In-
deed, a Genetic Algorithm (GA) is used to search for
possible test cases. Thus, a population of test individu-
als is maintained, which evolves during the search pro-
cess in hope of finding ‘good’ test cases.

An individual itself can not be executed, but con-
tains all necessary information to produce a complete
test case. This information can be divided into three
different categories, namely the constructor, the method
call sequence, and the invocation of the method under
test. The representation of an individual can be seen in
Figure 3.

The search algorithm starts with a randomly initial-
ized population of individuals. Each individual is trans-
formed into an executable test case and evaluated. The
evaluation is based on the following fitness function,

ffitness = (cov · p)+
(

executed cs
total cs

· (1− p)
)

where p is a value between 0 and 1, cov is the
code coverage achieved by the test case, executed cs the
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Figure 3. Representation of an individual

number of executed control structures, and total cs the
total number of existing control structures. Thus, the
fitness value is a value between 0 and 1, where a value
close to 1 indicates better individuals then a value close
to 0.

Individuals are selected from the population,
whereas fitter individuals are more likely to be selected
than others. They are then combined and eventually
mutated to form a new generation of a population.
These operations are applied differently on each part of
an individual.

The combination of two individuals for the con-
structor and the method under test, concerns the argu-
ment list. In this case, the information of the argument
list is exchanged at a randomly selected position. On
the other hand, the combination of the method call se-
quence is done by selecting randomly two positions for
each individual, at which the sequence is replaced.

Similar is the case for the mutation, which is ap-
plied with a predefined probability to randomly selected
individuals. For the constructor and the method under
test, there are two possibilities of mutation, namely to
generate a new type pattern, or to produce a new input
value for one of the existing arguments. The generation
of a new type pattern is applied to cover type combi-
nations, that otherwise would not be tested. A separate
table is maintained to keep track on already executed
type combinations. In case that all possible type pat-
terns have been tested at lest once, then the mutation
concerns only the argument value. For the mutation of
the method call sequence, a position is randomly se-
lected, at which a method is either added or removed
form the current sequence.

Since Ruby features duck typing, it is not possible
to determine from the method signature, which types
of parameters can be applied. Furthermore, through the
combination and mutation of individuals, it may happen
that new combinations of types are produced. Such a

Table 1. Test candidates

Test Projects1 Methods
Triangle2 triangle type
ISBN Checker valid isbn10?

valid isbn13?
AddressBook add address
RBTree rb insert
Bootstrap bootstrapping
RubyStat gamma
RubyGraph bfs

dfs
warshall floyd shortest paths

Ruby 1.83 rank
** (power!)

RubyChess canBlockACheck
move

1 Projects can, if not otherwise stated, be found at http://
rubyforge.org/ and http://raa.ruby-lang.
org/

2 Custom defined test candidate
3 Ruby Standard Library

possible situation shows the following example.
Let us suppose we have a method that takes as input

two parameters and applies the + operator. In this case,
possible input type patterns are (Fixnum, Fixnum) or
(String, String), but any other combination such
as (Fixnum, String) or (String, Fixnum) results
in an exception.

To reduce the number of raised exceptions, the sys-
tem learns to distinguish between applicable and inap-
plicable type patterns. During the search process, oper-
ations may lead to new type combinations. Such a com-
bination is tested for applicability, and in case that the
pattern is inapplicable, the operation may be repeated to
find a better solution.

The system learns also to distinguish the quality of
data generators. Thus, if a new input value of a spe-
cific type is required, then the selection is biased to-
wards better generators. The evaluation of data genera-
tors is based on the fitness value assigned to test cases.
Data generators that produced input values which led to
better solution candidates, will result in a higher evalu-
ation.

5. Experiment

In this experiment we want to test the applicability
of RuTeG and examine which code portions are diffi-
cult to cover. Therefore, a number of different test can-
didates are selected, that vary in their code complexity
and structure as well as the complexity of input data



they require. They range from classical code snippets,
to more complex methods taken from the Ruby Stan-
dard Library and open source projects. The test candi-
dates are listed in Table 1.

The outcome of this experiment is compared with
the results obtained by random testing. The random test
case generator uses the Analyser, to get information
about the class under test and its methods, and produces
test cases, by randomly selecting any type combination,
data generator, and method sequence.

Each test candidate is tested 30 times, to obtain a
good estimated result and to make sure that the data is
consistent. A test run terminates when full code cover-
age is achieved, or when a predefined time is exceeded.
This time varies between different test candidates, since
they differ in their complexity and required input data.
However, the time constraint is the same regardless of
the used test case generator.

6. Results

Table 2 shows the average code coverage achieved
by RuTeG and the random test case generator for each
test candidate. RuTeG could achieve full code cover-
age in 11 of 14 cases, where the lowest average code
coverage was 88%. On the other hand, the random test
case generator could find test scenarios that cover all
the code only in 4 of 14 cases. The lowest average code
coverage achieved by random testing was 68%.

We wanted to be sure that these results were statis-
tically significant and not obtained by chance. Thus, we
considered the following null hypothesis:

H0: there is no statistical difference in the results be-
tween the two generators

H1: there is a statistical difference in the results be-
tween the two generators

The Student’s t-test determines whether the means
of the two results are statistically different from each
other. Furthermore, the normality of the data was tested
by use of the Shapiro-Wilk method. In cases where a
difference was perceived, the probability that the results
were obtained by chance is less than 5% (*) or even less
than 1% (**). Therefore we can reject H0 and consider
the results obtained by the two generators as statistically
different.

Furthermore, Table 2 shows the time to maximum
coverage for both test case generators. It can be seen
that RuTeG does not only achieve higher code cover-
age, but also finds solutions quicker than the random
test case generator. The difference in time is not always

significant, but in such situations we have to consider
also the difference in code coverage.

Figure 4 shows the results of some test candidates
in a line chart and is typical of the other tests in the ex-
periment. The solid line represents the empirical data
obtained with RuTeG, whereas the dashed line repre-
sents the data of the random test case generator. The
average code coverage is displayed on the y axis and
the time, expressed in seconds, on the x axis.

From the line charts it is possible to see that in
some cases, there is already at the beginning a major
difference between the two results. This can be seen
especially in Figures 4(a) and 4(d). There is also a dif-
ference observable at the end, where the average code
coverage achieved by RuTeg is higher than the average
code coverage of random testing.

In Figure 4(b) the two results differ at the begin-
ning, whereas the random test case generator is able to
catch up with RuTeG as the time progresses. However,
there is still a significant difference in the final result, in
which RuTeG could cover more code than the random
test case generator.

From Figure 4(c) it can be seen, that both data
generators could cover much code within a short time.
However, the random test case generator hardly found
new test scenarios that could contribute to the cover-
age, whereas the line of RuTeG shows a slow increase,
which results in a higher code coverage at the end com-
pared to random testing.

7. Discussion

RuTeG was tested in an experiment in which the
outcome was compared with the results of a random test
case generator. The results show that the presented ap-
proach offers a possibility for a dynamic programming
languages to automatically generate test cases and both
simple and more complex test data. In most of the cases,
RuTeG could cover more code and find solutions faster
compared to the random test case generator, as can be
seen in Figure 4. An improvement was not always ob-
servable, but for all test candidates, RuTeG was at least
as efficient as random testing. There was no situation
in which the random test case generator outperformed
RuTeG.

The difference in the results between the two test
case generators can probably be explained by RuTeG’s
capability to explore different possibilities of input data
and then focus on a set of promising solutions. This
may be the reason, why it was possible to find already
at the beginning, a number of test cases to cover most
of the code.

One reason for the difference in the final achieved
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Figure 4. Line charts of the experimental results



Table 2. Average code coverage achieved by RuTeG and Random Testing (RT), with t-test where
* indicates p < . and ** indicates p < .; and the time to maximum coverage expressed in
seconds

Methods Cov. RuTeG Cov. RT t-test Time RuTeG Time RT
triangle type 100% 81% ** 59 99
valid isbn10? 100% 100% 29 84
valid isbn13? 100% 100% 34 80
add address 100% 100% 56 97
rb insert 100% 88% ** 68 92
bootstrapping 100% 86% * 54 88
gamma 98% 92% ** 209 213
bfs 100% 93% * 79 86
dfs 100% 96% * 70 72
warshall floyd shortest paths 100% 100% 155 196
rank 100% 92% * 111 202
** (power!) 100% 96% ** 274 356
canBlockACheck 94% 74% ** 285 333
move 88% 68% ** 356 143

coverage may be due to the evolution of individuals.
New individuals are generated based on collected infor-
mation of previous individuals. In Figure 4(c) there is a
continuous slow increase of the coverage, while the ran-
dom test case generator could hardly find new test sce-
narios that contributed to the coverage. In Figure 4(d)
one can see that there is a phase in which the coverage
achieved by RuTeG did not increase. Once an individ-
ual was able to cover new code, several new test scenar-
ios were found that contributed to the coverage. Thus,
these two results can probably be explained because of
the evolution of individuals.

A possible weakness of RuTeG could be observed
in the generation of method sequences, especially when
there is a strong dependency between the methods, such
that a specific order is required. As long as there are
only few methods that play an important role to sat-
isfy a certain condition, it is possible to find adequate
test cases. However, the more complex the method se-
quence becomes, the more difficult it is to find possi-
ble test cases. This could be observed while applying
RuTeG on the RubyTK library.

In this study we wanted to identify which character-
istics are typical for a dynamic programming language
and how they affect the automatic generation of test
cases. We selected Ruby for the implementation of our
tool. One characteristic of Ruby is its reflective abil-
ity. This makes it easier to collect relevant information
about classes and methods at runtime. In such a situa-
tion it does not matter, where parts of a class are defined,
as long they are available when the object is created.
Thus, methods can be defined in different modules and

included within a class. RuTeG makes use of this re-
flective ability to search for available methods that may
change the internal state of an object. RuTeG identi-
fies also the kind of arguments, whether its specification
is required or if they have a default value associated.
Arguments can also have a variable length or require a
code block. This information is collected and available
at runtime.

Another characteristic, as described in Section 2,
which many dynamic programming languages have in
common, is duck typing. Objects are described by what
they can or cannot do, instead of being associated with
a specific type. This makes it difficult to identify the
input data for method invocations, also because an ar-
gument can be used in different ways. Often methods
behave differently, depending on the argument’s current
type. RuTeG presents a possible approach to classify
such applicable type combinations and to disqualify in-
appropriate types.

Throughout the experiment it was possible to iden-
tify different kinds of complexity. One concerns the
input type of data. Basic types are easier to generate
than objects that consists of multiple values. In the lat-
ter case, a single value or a combination of values can
be decisive to satisfy a given condition. Changing one
value may modify the entire structure or meaning of an
object. This was observable for the RubyGraph test can-
didate. If we consider for example a cyclic graph, then
the removal of a single edge may result in a completely
different graph and thus have an affect to the executed
code.

But also the usage of basic types may become quite



complex, especially when there is only a small solution
space, in which a certain condition can be satisfied. This
may concern single arguments, but also a combination
of arguments, which is the case for the triangle test can-
didate. Here, each argument depends on other values,
and only if all three arguments have the same positive
numerical value, then it is possible to form an isosceles
triangle.

Another complexity factor is the sequence of
method invocations. This may concern an object passed
as argument, but also the object under test. Often it is
not the input value that determines whether a specific
code portion is executed, but the internal state of an ob-
ject. In order to satisfy a certain condition, it may be
necessary to call a specific method multiple times. But
also the sequence of method calls may increase in com-
plexity, especially when there is a dependency between
each method, such that a specific order is required. An
example, in which the method sequence plays an impor-
tant role, was the RubyChess test candidate.

RuTeG addresses the different kinds of complexity
with the definition and selection of specific data gen-
erators and the evolution of test candidates. This can
help in finding additional test cases that contribute to
a higher code coverage, and is probably the reason for
the better results in the experiment compared to random
testing.

The applicability and efficiency of the tool was
tested in the experiment on 14 test candidates. Some
test candidates are code snippets that were often used
in many testing papers. Other test candidates are
taken from the Ruby Standard Library and open source
projects, because we wanted to test the tool on more
realistic and complex code examples.

The Ruby Standard Library consists of a number
of classes, which were used to search for complex test
candidates. However, methods with the highest cyclo-
matic complexity are parsers. A parser may have many
control structures to respond differently for each key-
word, but can not really be considered as a challeng-
ing test candidate. Other methods with a relatively high
cyclomatic complexity have basic types as arguments.
Hence, it was difficult to find test candidates that met
our expectations. Therefore we extended our search to
open source projects to find test candidates with differ-
ent complexity and input data.

Apart from the test candidates mentioned in the ex-
periment, we applied RuTeG on other classes and meth-
ods from the Ruby Standard Library. For some methods
it was never possible to achieve full code coverage, even
after repeating the tests several times. After analysing
the reason why it failed to cover specific portions of the
code, we could locate some errors. This was due to

wrong computations and the usage of undefined vari-
ables, which results in exceptions and, in the end, un-
covered code. This or similar cases show when and how
the system can help to improve the quality of the code.

It is important to ensure the correctness of the
empirical results and to avoid a misleading conclu-
sion.Statistical conclusion validity is related to the re-
liability of the observed results. In our experiment we
tested each test candidate 30 times, to obtain a good es-
timated result and to make sure that the data was consis-
tent. The results were then presented as the average of
all test runs. In addition we applied the Student’s t-test,
to analyse the statistical significance.

A possible threat to internal validity may be the
comparison of the results with the random test case gen-
erator. There are different possibilities to implement
such a generator. The implementation of the used ran-
dom test case generator selects randomly one of the
available data types and existing data generators, to pro-
duce a possible input value. This may not be the natural
solution for static programming languages, where the
input type is known and values randomly generated by
a selected data generator. However, for dynamic pro-
gramming languages, the situation differs, since we can
not know which types are valid. Therefore, the random
test case generator must randomly choose between all
available data generators, if we want the same level of
automation. This in turn may have some disadvantages
for the random test case generator. The larger the set of
available data generators, the less efficient is the random
test case generator. On the other hand, RuTeG learns
during the search process to distinguish between better
and weaker data generators and applicable type com-
binations, and can therefore focus on more promising
solutions.

Furthermore, it should also be mentioned that we
applied only GA as a heuristic search algorithm to gen-
erate possible test cases. We do not know how other
search techniques perform, such as hill climbing, simu-
lated annealing or tabu search, to name but a few. Even
if they cannot achieve a higher coverage, it may be pos-
sible that they find different solutions quicker.

Construct validity addresses the issue whether a
test measures what it claims to measure. A way to en-
sure construct validity, is to use multiple and different
measures that are relevant for the purpose. We wanted
to test the performance of the implemented tool on a
number of test candidates. Therefore we measured the
time that was needed to achieve a certain level of code
coverage. In addition we wanted to test the quality of
the tool, which was done by measuring the coverage
achieved by the generated test cases.

External validity is related to generalizability.



RuTeG makes use of Ruby’s reflective ability. This is
a characteristic that many dynamic programming lan-
guages have in common, whereas the information that
they provide may differ from Ruby. Thus, RuTeG is
partially a Ruby specific implementation. Furthermore,
RuTeG applies the ParseTree to collect some of the rel-
evant information at runtime, which is a Ruby tool that
presents the code in an abstract syntax tree using S-
expressions. The collected information can probably
be obtained also in other dynamic programming lan-
guages, but in a different way. However, the core of
RuTeG, namely the test case and data generator, is in-
dependent from Ruby specific code and thus applicable
in any other dynamic programming language.

Another possible threat to external validity could
be the selection of test candidates, which was not cho-
sen randomly from the population, since we wanted to
have candidates to cover different criteria. Therefore we
cannot be sure whether the sample is representative of
the Ruby code, but we can use the results as an indica-
tor.

8. Conclusion

In this study we implemented RuTeG, a tool to
automatically generate test cases for the dynamic pro-
gramming language Ruby. RuTeG can be used for dif-
ferent kinds of input values. The system was tested on
14 test candidates, which differ in their code complex-
ity and structure as well as the complexity of input data
they require. The result of the experiment showed the
applicability of the tool and that it was possible to find
test cases to cover specific portions of code.

RuTeG could achieve full code coverage in 11 of
14 cases, while the random test case generator could
find test scenarios that cover all the code only in 4 of 14
cases. The statistical significance of the difference in
the results was tested by a Student’s t-test. A difference
was also observable in the time required to find possible
test cases, where RuTeG could find solutions quicker
than the random test case generator.

There are different kinds of complexity that have
a major effect on the generation of tests cases. These
are self-defined types, complex and compound data
structures, input data with a small solution space, and
method sequences to change the internal state of an ob-
ject. The complexity of method sequences is a sensitive
factor in the automatic generation of test cases. The
more complex the method sequence becomes, the more
difficult it is to find possible solutions. Very complex
and dependable method sequences may not occur fre-
quently, but in such situations, both test case generators
will most likely fail to achieve high code coverage.

The goal of RuTeG is to find test scenarios in order
to cover as much code as possible. However, code cov-
erage is not a very strong coverage criterion. A possi-
ble future step would be aiming for branch or condition
coverage.

The current version of RuTeG searches for applica-
ble type combinations, and then for each type selects an
adequate data generator. This intermediate step is not
necessary. A more efficient solution would be to use di-
rectly the set of available data generators. In this case
the system would search for a combination of applicable
generators instead of data types, which may improve the
performance but also the quality of generated test cases.
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Appendix A

Appendix A gives a detailed description of the main components of
RuTeG, which were briefly introduced in the paper. These compo-
nents are separated in Analyser (Section A.1), Data Generator (Sec-
tion A.2), Test Case Executor (Section A.3) and Test Case Generator
(Section A.4).
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A.1 Analyser

The Analyser collects information from the input source code, which is relevant
for the later search process of the system. In this section we describe how
the Analyser performs its task, what information it can collect, and what is
generated and delivered to the test case generator.

A.1.1 Ruby’s AST and S-expressions

Most information can be obtained by using the ParseTree1, which is a Ruby
tool that presents the code of a class or a specific method in an abstract syntax
tree using s-expressions. S-expression, also known as sexp, stands for symbolic
expression, and is probably best known in the context of LISP2. S-expression is
a notation for presenting tree structures in a linear text enclosed in parenthesis,
containing either atom elements or further s-expressions [17]. In the context
of the ParseTree tool, the first element of an s-expression, which is a symbol,
defines the meaning of the entire expression. The following example presents
the s-expression of a code snippet. For the sake of clarity, figure 5 shows the
s-expression as a tree.

class TestClass

def method1(a,b)
sum = a + b
puts sum

end

def method2(*c)
l = c.length
puts l

end

end

s(:class, :TestClass, s(:const, :Object), s(:defn, :method1, s(:scope, s(:block,
s(:args, :a, :b), s(:lasgn, :sum, s(:call, s(:lvar, :a), :+, s(:array, s(:lvar, :b)))),
s(:fcall, :puts, s(:array, s(:lvar, :sum)))))), s(:defn, :method2, s(:scope, s(:block,
s(:args, :”*c”), s(:lasgn, :l, s(:call, s(:lvar, :c), :length)), s(:fcall, :puts, s(:array,
s(:lvar, :l)))))))

1https://rubyforge.org/projects/parsetree/ - Aman Gupta, Eric Hodel, Luis Lavena, Ryan
Davis - Version 2.1.1

2http://www-formal.stanford.edu/jmc/recursive.pdf - John McCarthy about LISP
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Figure 5: S-expression presented as a tree

ParseTree, in its current version, defines more than 100 different node el-
ements, whereas only a few of them are important to the Analyser. These
relevant nodes are described in the following subsections.

A.1.1.1 Methods

The definition of methods can be distinguished into instance methods and class
methods. Instance methods are presented with a leading :defn symbol, fol-
lowed with the name of the method and an s-expression. Class methods dif-
fer slightly from instance methods. They start with a leading :defs symbol,
followed with an s-expression containing :self, the method name and finally
another s-expression.

instance method s(:defn, :method name, s(...))
class method s(:defs, s(:self), :method name, s(...))

Table 3: S-expression for method definitions

A.1.1.2 Arguments

So far we have seen how methods are defined. Now we want to find the argument
list assigned to each method. Arguments are presented in the same way for
instance and class methods. The leading node element for arguments is :args.
If a method is defined without arguments, then the s-expression is present but
empty.
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def method_name

For the method definition above, the s-expression for the argument list becomes

s(:args)

In Ruby there are four different possibilities to define arguments for a method.
The first, and probably the most common, is a predefined number of arguments.
This means that they are obligatory and must be specified with the method
invocation, in order to avoid an ArgumentError exception.

def method_name(a)

The corresponding s-expression for the argument list looks as follow

s(:args, :a)

Aside from obligatory arguments, Ruby offers also the possibility to define de-
fault values for parameters.

def method_name(a, b=nil, c="default")

For this example it is possible to call the method with either one, two or three
arguments. In case that an argument is not specified for the method invocation,
it will be assigned to the default value. The s-expression for the argument list
changes to

s(:args, :a, :b, :c, s(:block, s(:lasgn, :b, s(:nil)),
s(:lasgn, :c, s(:str, "default"))))

Here we are able to determine the argument variables, but from the initial part
of the s-expression it is not possible to tell, which of them are obligatory and
which contain a default value. Therefore it is necessary to examine also the
attached s-expression. From this we can see, that both b and c have a value
assigned and thus they are optional, which means they have a default value.
The third possibility that Ruby offers, is to pass an argument list of variable
length. This is done by placing an asterisk in front of the parameter name.

def method_name(a, *b)

In this case the first argument is assigned to the first parameter variable as
usual, whereas the remaining arguments are collected and assigned to a new
array. The s-expression for this example looks as follow

s(:args, :a, :"*b")

From this s-expression we can clearly distinguish, which one of these two pa-
rameters is the argument list of variable length. The forth and final possibility
that Ruby offers, is an argument containing a code block. This is handled sep-
arately by the ParseTree and therefore not part of the :args expression. Code
blocks have its own symbol node, namely :block_arg. Hence the definition of
the following argument as a code block

def method_name(a, &code)

becomes

s(:block_arg, :code)
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no argumetns s(:args)
required arguments s(:args, :parameter name)
default arguments (=) s(:args, :parameter name, s(...))
argument list (*) s(:args,:”*parameter name”)
code block s(:block arg, :parameter name)

Table 4: S-expression for arguments

A.1.1.3 Method invocations

So far we know how to extract method definitions and their argument list. Fur-
ther we can say what kind of argument is required, namely if its specification
is obligatory, if it has a default value and thus optional, if it is a list of variable
length, or if it is assigned to a code block. Since Ruby doesn’t use any type
specification for arguments, we have to look on the method invocations in order
to be able to disqualify inadequate data types. Method invocations are rep-
resented with a leading :call node. There exist two different forms of :call
s-expressions. The first one is defined as

s(:call, s(...), :method_call)

which is produced by method invocations without argument list. Therefore

a.length

becomes

s(:call, s(:lvar, :a), :length)

Method invocations can be nested as the following example shows.

a.length.to_s

The corresponding s-expression for this method invocation becomes

s(:call, s(:call, s(:lvar, :a), :length), :to_s)

However, in this situation we are interested only in the innermost s-expression,
since this is the method call associated to the variable in question. The second
and all succeeding method calls, refer to the return value of the preceding. The
second form of the :call s-expression is defined as

s(:call, s(...), :method_call, s(...))

which is produced by method invocations with an argument list. Therefore

a + b

becomes

s(:call, s(:lvar, :a), :+, s(:array, s(:lvar, :b)))

Also in this situation it is possible that :call s-expressions are nested. In any
case we are always interested in the innermost method call, that is directly
related to the variable.
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method call without argumetns s(:call, s(...), :method call)
method call with arguments s(:call, s(...), :method call, s(...))

Table 5: S-expression for method invocations

A.1.2 SexpProcessor

From the previous section we have seen a possibility to extract information form
a given s-expression. However, such an s-expression can become quite complex,
especially for longer codes. Fortunately there exists a SexpProcessor for Ruby,
that can be used to write an own customized SexpProcessor, whereas there are
two major rules that must be followed. First, everything that comes in must
be processed. This means that every element must be observed by shifting it
form the list. Also nested s-expressions must be examined by passing them as
arguments to the process method. A further basic rule is, that the information
that comes in should be the same that comes out. This means that the outcome
of the SexpProcessor is again an s-expression that matches with the input.

By following these rules we can write our own SexpProcessor that gathers
all the information that is relevant for the later search process. This can be
done by creating a new class that inherits from the class SexpProcessor. Within
this class we can define process methods that are called for s-expressions with
a specific initial symbol. In order to do so, we must define a method with the
name process symbol name, where symbol name corresponds to one of the node
elements. Therefore, for the Analyser we have to define following methods

process defn(expression)
process defs(expression)
process args(expression)
process block args(expression)
process call(expression)

For all other node elements within the s-expression, the default process
method is executed. By defining customized methods, we can collect relevant
information that is later delivered to the Analyser.

A.1.3 Result returned by the Analyser

The Analyser creates a CUTInfo object which contains information about the
class under test. These are the constructor and its argument list. For each
argument it is know, whether its specification is required or optional. Also the
methods invoked for each argument are stored, to reduce later the set of possible
input types. The CUTInfo object maintains in addition a list of methods that
are declared within the class under test. These are associated with a MUTInfo
object that contains information about the argument list of the method. Fur-
thermore, it keeps track of the coverage reached during the search process, and
about adequate or disqualified data generators. Figure 6 shows an example of
an object delivered by the Analyser.
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Figure 6: Example of the generated outcome delivered by the Analyser

A.2 Data Generator

Data Generators produce input values for method invocations. The set of possi-
ble input types is large, ranging from simple data types such a numbers, to more
complex data such as objects and arrays. Also the domain of input values for a
specific type can be quite large. Finding appropriate values, is a very important
although difficult task. In this section we present a possible approach for the
generation of input data.

A.2.1 Characteristics of a Data Generator

A Data Generator has to cover a large domain of types and input values. It is
probably too much for a single generator to cover all these different possibilities.
Therefore, a major design decision was to have different data generators for
specific problems. The responsibility lies with each single generator to produce
qualitative input values. Since multiple generators can be applied to the system,
they have to share a common interface, such that the application can behave
independently, regardless of which generator is currently used.

It is very unlikely to have a specific data generator that produces input
values for all possible problems. Therefore, the set of data generators must be
modifiable, by removing or adding user defined generators. How this can be
achieved and what a user must know to create its own specific generator, is
described in the following subsections.
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A.2.2 Defining problem-specific Generators

When writing a new data generator, there a few things that a developer must
consider. Every generator must include the module BaseGen which implies
methods that are required by each data generator.

class NewDataGen
include BaseGen
# data generator specific code

end

Each generator must declare a method with the name generate. The return
value of this method is a randomly generated input value. For simple generators,
this may be a single value, such as it is the case for numbers or strings. But
this is not enough for all possible types. A generator, that produces an object
of a specific class, probably requires a prior initialisation. Therefore, the return
value is a pair of an initialisation code string and the value. This design was
chosen because of its simplicity in the later process. However, it is not an
optimal solution, and complicates the usability. In case that no initialisation is
required, then the value nil should be returned instead of an initialisation string.
This is clarified through the following examples. The first example returns a
random number between min and max, and therefore doesn’t require any prior
initialisation.

def generate
random_number = rand((max - min).abs + 1) + min
return nil, random_number

end

In the second example, an object is created and its attribute changed, before
returning the value.

def generate
variable_name = # a unique identifiable variable name
random_value = # a random generated value
init = "#{variable_name} = UserDefClass.new \n"
init += "#{variable_name}.set_a_value = #{random_value} \n"
return init, variable_name

end

The reason why the generator doesn’t create an instance of a class and
returns its object, instead of returning the code as a string, is that the code is
needed in the later process to generate and deliver test case scenarios. If the
generator returns an instance of a class, then it would be difficult to reproduce
the same object for the final test case. More details about the generation of test
case scenarios, is discussed in the section A.4 about the Test Case Generator.

The last specification required for each data generator is the type of data that
it produces. This is done, so that the system is able to find all data generators
of a certain type. The return type is specified by setting the instance variable
@gen type, as the following example shows.
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class NewDataGen
@gen_type = :UserDefClass
# data generator specific code

end

Finally, the new data generator must be registered before it can be used.
This is done by adding its symbolic name to the set of existing data generators,
as the following example shows.

DataGenClass.add(:NewDataGen)

On the other hand, it is also possible to remove registered generators. This is
done as following.

DataGenClass.remove(:NewDataGen)

Knowing theses few restrictions, a developer can write data generators that best
fit to the context of the program under test. A further advantage of having mul-
tiple data generators for specific problems, is that they can be easily combined
to produce more complex data. For example, a generator that produces an
array, could use a positive fixnum generator to define the size, and then fill it
with random data of a specific type with other existing generators. The array
generator in turn can be used again to produce nested arrays.

A.2.3 Standard Data Generators

RuTeG contains already a number of data generators for standard types, which
can be used to test methods with common input data. However, these data
generators select random values from a large domain, and may not be efficient
enough for specific problems. This subsection presents the set of standard data
generators, and the values that are possible to be produced. Table 6 lists all
predefined data generators that are already implemented in RuTeG.

There are two data generators that produce numerical input values. The
first generator creates a random Fixnum, which is an integer value, between the
default range of [-32768, 32767]. This range can be modified through defined
methods, and therefore used in other data generators to produce for example
only positive numbers or numbers within a small range. The second numerical
data generator creates a random Float value. Also here is the possibility given,
to change the range of the domain. The default value of the precision is set to
three, which means that there are at most three digits after the decimal point.

The String generator produces a sequence of alphanumerical characters. The
default value for the maximal length of the sequence is set to 20, however this
value is modifiable. The set of possible characters consists of all lower and upper
case alphabetic letters and numerical values, whereas it is possible to change
the domain of characters.

Other standard data generators that produce basic input values, are the
NilClassGen and ObjectGen. The former creates a nil value, which is also an
object of class NilClass in Ruby. The latter generates a simple object of type
Object. For both generators there no set from which a value could be randomly
selected, and thus they very simple.

Other common input types are arrays. Therefore one of the standard data
generators produces an array of random length, with random values. Both the
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length and possible data are configurable. The maximal default length is set to
10. The array is filled with random values produced by other data generators.
The default set of data generators implies all the above mentioned standard
data generators. Thus, the array is filled with values of the same type produced
with a random selected data generator. There is a small chance, that the array
is filled with values of different type, where for each value a new data generator
is randomly selected, however this may produce arrays that are unrealistic and
never used in any context.

Data Generator Characteristics
FixnumGen values: [-32768, 32767]

FloatGen values: [-32768, 32767]
precision: 3

StringGen values: [a-z, A-Z, 0-9]
max length: 20

NilClassGen nil

ObjectGen Object.new

ArrayGen values: [FixnumGen, FloatGen, StringGen, NilClassGen,
ObjectGen]

max length: 10

Table 6: Standard Data Generators

A.3 Test Case Executor

To obtain information about generated test cases, they are executed by the Test
Case Executor. Rcov3, a code coverage tool for Ruby, is used to measure the
statement coverage achieved by the current test scenario. Therefore, the test
case must be executed within a hook block, as the following example shows

rcov.run_hooked do
# test case scenario

end

After running the test case within the hook block, the Rcov tool provides
information about which line of code was executed from the current class under
test. This information is obtained by calling the following line.

lines, marked_info, count_info = rcov.data(file_name)

Here, lines is an array of strings that represents the lines of the source code
under test, marked info is an array that holds true or false values to indicate

3http://eigenclass.org/hiki/rcov - Mauricio Julio Fernandez Pradier - Version 0.8.1.2
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whether the corresponding line of code was executed or not, and count info is
an array of numbers that represents how many times a line was reported as
executed. The following example shows how the information is presented by
the Rcov tool.

count info[] marked info[] lines[]
1 true def print_10_times(msg)
0 false # this is a comment line
2 true 1.upto(10) do |counter|
10 true puts "#{counter}: #{msg}"
0 false end
1 true puts "\’#{msg}\’ was printed 10 times"
0 false end

Rcov returns the information for the whole source file, and therefore we have
to extract the lines that match to a specific method, since we are interested in
the coverage of the current MUT. Furthermore, lines that are comments are not
executed, and therefore always marked as false. Fortunately Rcov provides an
additional method is code?, that can be used to determine whether a given line
contains executable code or not. With this information we are able to calculate
the coverage for the MUT.

The Test Case Executor keeps track of the coverage achieved by previous
test cases, and is updated when uncovered lines are executed. From this we are
able to distinguish between test cases that contribute to the coverage and test
cases that execute already covered lines of code.

Test cases are divided into three major parts, namely the constructor, the
sequence of method calls to modify the state of an object, and the invocation
of the current method under test. In case that the execution of a test scenario
leads to an exception, it is possible to determine the responsible part. This is
done to prevent a false evaluation in the search process.

A.4 Test Case Generator

The test case generator is the core of RuTeG and is responsible for producing
possible test cases. A test case is a sequence of method calls that create an
object, change its state, and finally invoke the method under test. There are
two major tasks, namely to find an appropriate list of arguments and to form
an adequate sequence of method invocations. Both are something that can not
be done right away. Indeed, a Genetic Algorithm (GA) is used to search for
possible test case scenarios. This section describes how the test case generator
performs this task.

A.4.1 Searching for test cases

A GA is applied to search for possible test case scenarios. The idea of GA
is to have a population (Section A.4.1.1) of candidate solutions that evolve
during the search process. The algorithm starts with a random initialisation
of the population. Each individual of the population is executed and evalu-
ated (Section A.4.1.2) according to a predefined fitness function. A selection
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operation (Section A.4.1.3) chooses the fittest individuals that are combined
(Section A.4.1.4) to form a new generation of the population. Individuals can
mutate (Section A.4.1.5) with a predefined probability, to prevent that they
become too similar and thus that the population freezes. Afterwards, each
individual is evaluated again and the process is repeated, until a termination
criterion is fulfilled. This is either a maximum number of repetitions or the
achievement of full code coverage. In the following subsections we describe how
the population is set up and discuss in detail each phase of the algorithm.

A.4.1.1 The population

The population is a set of individuals. An individual is an encoded representa-
tion of candidate solutions, also called genotype. This means that an individual
itself can not be executed, but it contains all necessary information to produce
a complete test case, which is called phenotype.

The encoded information of an individual is based on a simplified model
presented by Feldt et. al. [10]. It can be divided into three categories; the
constructor to create an object from the class under test, the method call se-
quence to modify the state of an object, and the invocation of the method under
test. The constructor consists of the argument type pattern (Section A.4.2), the
argument list, and the data generators that were used for the creation of input
values.

TypePatter: [type1, type2, ...] ArgList: [[init1, value1], [init2, value2], ...]

The method call sequence is similar to the constructor, with the exception
that it contains additional information about the method name.

The invocation of the method under test contains information about the
argument type pattern, the argument list, and which data generator was applied
for the creation of the input value.

DataGen: [gen1, gen2, ...]

Information about the argument type patterns and the applied data gen-
erators are not relevant for the creation of the phenotype, but it is used for
statistical purposes and for the later combination and mutation phase. Figure
7 summarises the encoded representation of an individual.
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Figure 7: Encoded representation of an indivdual

A.4.1.2 Evaluation of individuals

The selection of an individual depends on the defined fitness function. It has a
significant impact on the success rate of the search process and therefore it is
important to choose a well constructed fitness function. The aim of the tool is
to find test cases, that cover as much code as possible, hence the more code and
control structures are executed, the better is an individual. The fitness function
used in RuTeG is defined as

ffitness = (cov · p) +
(

executed cs

total cs
· (1− p)

)
where p is a value between 0 and 1, cov is the code coverage achieved by the

test case, executed cs the number of executed control structures, and total cs
the total number of existing control structures. Thus, the fitness value is a value
between 0 and 1, where a value close to 1 indicates better individuals then a
value close to 0.

A.4.1.3 Selection phase

During the selection phase, individuals are chosen from the current population.
They are then combined to form new individuals for the next generation. Two
common selection methods are the roulette wheel selection and the tournament
selection.

The roulette wheel selection associates a probability to each individual, that
is proportional to its fitness value. An individual is then randomly selected
according to its probability. This means, that individuals with a higher fitness
value are more likely to be selected than individuals with a low fitness value.

Another selection method is the tournament selection. It chooses with the
same probability a number of individuals that will be part of the tournament.
The winner, namely the fittest individual, is then selected for the combination.
The number of participants in a tournament is not restricted. The higher the
number of participants, the lower is the chance for weak individuals to be se-
lected. The tournament selection is the default method for RuTeG and used in
the later experiment.

A.4.1.4 Combination phase

During the combination phase, two selected individuals exchange their informa-
tion. This results in having two new individuals which will be part of the new
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generation. There are different possibilities to combine individuals. Two com-
mon methods are the one-point crossover combination and the cut and splice
combination.

For the one-point crossover combination, the information of the individuals is
exchanged at a random selected position. This is clarified through the following
example.

old Individuals

new Individuals

For the cut and splice combination, the position where the information is
exchanged, is independent between the two individuals. This results in two
individuals of different length, as the following example shows.

old Individuals

new Individuals

In this context, the combination of two individuals can be applied on dif-
ferent parts. For the constructor and the method under test, the combination
between individuals concerns the argument list. For this, the one-point crossover
combination is applied. This is shown in the following example.

If the length of the argument list doesn’t match between the two individu-
als, then the missing elements are substituted with temporary pseudo elements
(PsE). This may be the case for default parameters or parameters with variable
length. The following example shows such a situation.
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While the first of the two new individuals (1*) is still a valid method call,
the second individual (2*) is not feasible, because of its pseudo element between
the arguments. In this case, all the arguments after the pseudo element are cut
off, and thus discarded.

If individuals have two completely different type patterns, then the result
may be a new combination of types. While the former patterns were applica-
ble, which means that they didn’t lead to an exception, the resulting patterns
may be inapplicable. As we will see soon in the following subsections, we are
able to distinguish between applicable and inapplicable patterns. In case that
the new individuals result in an inapplicable pattern, then the combination is
repeated, until applicable type patterns are found, or a maximum number of
tries exceeded.

For the combination of the method call sequence, the cut and splice method is
applied. This means that the sequence of two individual is cut at two different
randomly selected positions, and exchanged. This is shown in the following
example.

A.4.1.5 Mutation phase

During the mutation phase, individuals of the new population are randomly
selected, and mutated with a predefined probability. The mutation of an indi-
vidual can affect different parts, such as the constructor, the method sequence,
and the method under test.

For the constructor and the method under test, there are two possibilities
of mutation, namely to generate a new type pattern, or to produce a new input
value for one of the existing arguments. The generation of a new type pattern
is applied to cover type combinations, that otherwise wouldn’t be tested. A
separate table is maintained to keep track about already applied type combina-
tions. If no type pattern can be found that hasn’t already been tested, then the
mutation concerns only the argument value. For the generation of a new input
value, a data generator of the corresponding type is selected. The selection is bi-
ased towards the evaluation of the data generators (Section A.4.3). This means
that the probability that a specific generator is selected to produce an input
value, depends on its evaluation. We will see soon more about the selection and
evaluation of data generators, in the following subsections.
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For the mutation of the method call sequence, a position is randomly se-
lected, at which a method is either added or removed form the current sequence.
In case of the addition, a method from the class under test is randomly chosen
and added to the sequence.

A.4.2 Input type pattern

Ruby features duck-typing, and therefore it is not possible to determine which
parameter type can be applied, by just having the method signature. On the
other hand, trying each possible type and getting overwhelmed with exceptions
may not be very efficient. Fortunately, the CUTInfo and MUTInfo objects,
returned by the Analyser, contain information about which methods are called
for each argument. From this it is possible to construct a list of types associated
with a value that expresses the likelihood of being a good candidate. This value
is calculated as following

ftype =

{
1−

(
|(Marg−Mtype)|

|Marg|

)
if |Marg| > 0

1 otherwise

where Marg is the set of methods invoked for the parameter in question, and
Mtype the set of methods that a type or class can respond to. This means that if
a class has defined all required methods, then the value is equal 1. The less the
number of common methods, the lower is the value assigned to the type, where
a value equal to 0 expresses that a class has none of the required method calls
defined. This list is used as a ranking of possible candidates from which a type
is selected with a probability that is proportional to the assigned value. This
however doesn’t guarantee that no further exceptions are raised. A possible
scenario shows the following example.

def add(a,b)
a+b

end

In this case, possible input type patterns are (Fixnum, Fixnum) or (String,
String), but any other combination such as (Fixnum, String) or (String, Fixnum)
results in an exception. Therefore, the system learns during the search process
about inappropriate type patterns, to reduce the number of raised exceptions.
This is done by maintaining different categories for type combinations, namely
applicable, suspicious, and critical patterns. If a certain type pattern is applied
to a method call, and its execution doesn’t result in an exception, then this
pattern is added to the set of applicable patterns. On the other hand, if an
exception of type NoMethodError or TypeError is raised, then the type pattern
is added to the set of suspicious patterns. Suspicious patterns have a low chance
to be applied again, in order to prove their applicability. If they continue to
fail, then they are moved to the set of critical patterns. Critical type patterns
are avoided by the system.
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A.4.3 Selection of data generators

Finding applicable type patterns for method invocations is only the initial step
in search of adequate test input data. The second step is the selection of a
data generator, since there are multiple generators that can produce the same
type of data. At the beginning, each generator of a specific type, has the same
probability to be selected. For each generated input value, its data generator
is memorised and evaluated depending on the resulting fitness value of the test
case. This means, that the set of assigned values increases with the number
of utilisation. The actual evaluation of a generator is then calculated by the
arithmetic mean of all assigned values. Generators which were able to produce
input data that lead to better test cases, will get a higher value than generators
for inadequate data. The probability for a data generator, to be selected again,
depends on its evaluation.
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Appendix B

Appendix B describes in detail the steps of the experiment done
with RuTeG and presents the results. Section B.1 introduces the
experiment. The test candidates are presented in Section B.2. The
results are presented and discussed in Section B.3.
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B.1 Experiment

In this experiment we test the developed tool on a number of different test
candidates. We want to see whether the presented approach can be used to
find possible test case scenarios. The experiment should show, if the tool is
applicable and in which situations it is difficult to achieve full coverage. The
test candidates are code examples that differ in their complexity and required
input data. Each test candidate is tested multiple times, to obtain a good
estimated result and to make sure that the data is consistent.

The outcome of this experiment is compared with the results obtained by a
random test case generator. This is done to see whether search based software
testing, and particularly the developed tool, shows improvements compared
to random testing. The random test case generator produces test scenarios,
without applying any heuristic search technique that modifies test cases towards
better solutions. Arguments for the constructor and method invocations are
created by selecting randomly one of the existing data generators. The sequence
of method invocations is randomly chosen, to change the state of an object.
Every test case is generated independent form previous test cases and thus test
scenarios are not evolved.

Both test case generators start with the same initial condition. The Analyser
is used to provide information about the class under test and its methods, such
as the possible number of arguments for the constructor and method calls. After
this, the generators start to deviate from each other. While RuTeG maintains
a population of test individuals and learns about applicable type combinations,
the quality of data generators and relevant method sequences, the random test
generator, selects any type combination, data generator, and method sequence
randomly.

Each test candidate is tested multiple times. A test run terminates when
full code coverage is achieved, or when a predefined time is exceeded. This time
varies between different test candidates, since they differ in their complexity
of input data and code structure. However, the time constraint is the same
regardless of the used test case generator.

B.2 Test Candidates

Test candidates are selected to cover different input data and complexity. They
vary from classical code snippets, to more complex methods taken from the
Ruby standard library and open source projects.

The test candidates are briefly presented in the following subsections. Ta-
ble 7 shows the test candidates, their number of line of source code, and the
cyclomatic complexity.

B.2.1 Triangle

The Triangle example is a short code snippet used in many testing papers that
takes three numerical input values and determines, whether they can form a
valid triangle or not. In case of a valid triangle, the method determines its type,
whether it is a scalene, equilateral, or isosceles triangle.
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B.2.2 ISBN Checker

The ISBN checker is a small tool that takes a string as input, and checks whether
it is a valid ISBN10 or ISBN13 code. An ISBN1 code is a sequence of numerical
characters of length 10 or 13, whereas the last character can be any number
between 0 and 9 or ’X’. The ISBN code consists of five parts, namely the prefix
element, the registration group element, the registrant element, the publication
element, and the check digit. These parts can be separated with hyphens or
spaces. Thus all the following ISBN codes are valid.

978-0-571-08989-5
978 0 571 08989 5
9780571089895

B.2.3 AddressBook

AdressBook is a simple application to organize contact information, such as
addresses, e-mail addresses and phone numbers.

B.2.4 RBTree

RBTree is a sorted associative collection using Red-Black Tree as the internal
data structure. It is a kind of a binary search tree that maintains additional
information about colors, which is used to automatically balance itself whenever
a node is inserted or deleted. The maximum height of the tree is 2 log(n + 1)
which results in a search time of O(log n), where n is the number of nodes.

B.2.5 Bootstrap

Bootstrapping is one of many statistical resampling methods, and is often used
when the theoretical distribution of the population is unknown. It can be applied
to estimate properties of an approximated distribution, such as the arithmetic
mean, standard deviation, or the confidence interval.

B.2.6 RubyStats

RubyStats is a statistics library which supports different kinds of distributions,
such as binomial, beta and normal distributions, and provides some basic sta-
tistical functions.

B.2.7 RubyGraph

RubyGraph is an implementation for directed and undirected graph data struc-
tures and algorithms. The tool includes a number of different graph algorithms,
such as Breadth First Search (BFS), Depth First Search (DFS) and the Floyd-
Warshall algorithm.

BFS is an algorithm to traverse a graph in breadth first order and to search
for a given element. Similar is DFS, only that the graph is traversed in depth
first order. The Floyd-Warshall algorithm can be used to find the shortest path
within a weighted graph.

1http://www.isbn-international.org/en/manual.html
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B.2.8 Ruby1.8

Ruby comes with a large standard library, providing a number of different classes
and functions, especially for basic types. One such library is ’mathn’, which
provides mathematical functions for different numerical values, such as integers,
real, rational and complex numbers.

Another Ruby standard library is ’matrx’, which provides a class for rep-
resenting a mathematical matrix, and contains methods for generating special-
case matrices, such as zero, identity, diagonal, and singular matrices. It can
be implemented to perform different arithmetic and algebraic operations, and
to determine their mathematical properties, such as their traces, ranks, and
determinates.

B.2.9 RubyChess

RubyChess is a stand-alone chess engine that comes with a graphical Ruby/Tk
user interface, to play chess against the computer. It is a direct port from
pythonchess 0.6.

Test Candidate Methods SLOC CC
Triangle

triangle type 26 8
ISBN Checker

valid isbn10? 18 7
valid isbn13? 13 6

AddressBook
add address 10 3

RBTree
rb insert 49 17

Bootstrap
bootstrapping 38 9

RubyStat
gamma 116 16

RubyGraph
bfs 39 12
dfs 34 10
warshall floyd shortest paths 26 11

Ruby1.8
rank 56 13
** (power!) 59 16

RubyChess
canBlockACheck 23 10
move 111 26

Table 7: Test candidates for the experiment; Test Candidate, Methods, Source
lines of code (SLOC), Cyclomatic Complexity (CC)
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B.3 Results and Discussion

B.3.1 Triangle

Figure 8: Line chart of the results for the Triangle test candidate - triangle type

Figure 8 shows the results for the Triangle test candidate, where the average
coverage is presented on the y-axis, and the time expressed in seconds on the
x-axis. The solid line represents the experimental data obtained with RuTeG,
while the dashed line is obtained with random testing.

From the line chart can be seen that after a short time RuTeG was able, to
find test cases that achieved a code coverage of 50%. After this, the curve begins
to flatten slightly until the upper limit is reached. In all test runs, RuTeG was
able to achieve full coverage within the measured time. In case of the random
test case generator, it was possible to cover relatively quickly the first 50%,
whereas a difference can be observed already here between the two test case
generators. Random testing required more time to find test scenarios in order
to cover the first 50%. From this point, the line rises slowly until the average
coverage of 81% is reached. Thus, the experimental data differ also in the final
average coverage.

The reason of these results can be explained in the following way. RuTeG
was able to eliminate individuals without numerical input values, since they
were poorly evaluated. This leads already after few generations to a population
with almost only numerical individuals. Through the combination of fitting in-
dividuals, and the generation of only numerical input values, it was possible to
overcome the 80% mark. To achieve full coverage, a specific condition must be
satisfied, namely three equal numerical input values such that an isosceles trian-
gle can be formed. This is a fairly strict condition and difficult to generate with
random testing. One reason for the difference in the required time between the
two test case generators, may be because of the combination of three numerical
input data. The random test case generator doesn’t only have the difficulty to
fulfill the strict condition, but also to produce a correct combination of input
data.
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B.3.2 ISBN Checker

Figure 9: Line chart of the results for the ISBN Checker test candidate -
valid isbn10?

Beside of the standard String Data Generator, an additional ISBN Generator
was used. The reason for this is that a random sequence of any length and
any alphanumerical character, will most likely never succeed in producing a
valid ISBN code. Therefore, the ISBN Generator creates values according to a
predefined pattern. Thus, each character sequence has a length of either 10 or
13. A character can be any numerical value, while the last character, the check
sum, is a number between 0 and 9 or ’X’.

Figure 9 shows the results of the experiment with the valid isbn10? method
from the ISBN Checker. From this line chart can be seen that the results are
quite similar and that both test case generator were able to find valid input
data, such that full code coverage is achieved. The observed results differ in the
time required to find a valid ISBN code.

The method under test doesn’t imply any strict conditions, nor requires any
specific sequence of method invocations. That’s probably the reason why both
test case generators were able to succeed. In case of RuTeG, it became soon clear
that the method under test requires a String as input data. Thus, the next step
was to choose between the standard String generator and the ISBN generator.
Also in this case, test scenarios got a better feedback using the ISBN generator
than using the standard String generator, and therefore it was possible to focus
on a specific set of the solution domain. On the other hand, the random test
case generator is not able to reduce the domain of possibilities, which explains
the difference in the time required to find valid input data.

Similar is the situation for the valid isbn13? method, which has the same
structure and conditions as the valid isbn10? method, and differs only in the
checksum calculation.
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B.3.3 AddressBook

Figure 10: Line chart of the results for the AddressBook test candidate -
add address

Figure 10 shows the results collected for the add address method from the
AddressBook test candidate. Both test case generators were able to find test
cases in order to achieve full coverage. The outcome differs in the time. RuTeG
was quicker in finding a possible solution than the random test case generator.

Both test case generators were able to find solutions to achieve full statement
coverage. This is generally because of the simplicity of the method under test.
The main objective was to see if it is possible to generate data for a specific
type without a predefined data generator. The method under test requires an
object of type Person and a String. Thus, for user defined classes, which are part
of the project and as such a possible input type candidate, but don’t have an
explicit defined data generator, an object is created by using the same method
as for the class under test. This means that the Anaylser collects information
about the user defined class, which is used to generate a constructor call. On
the other hand, if a data generator for the user defined class is present, then
only the generator will be used instead of the general method, to produce a
possible input object. However, an explicit definition of a data generator for a
used defined class is certainly a better choice, since the default creation of an
object is quite generally and may not be very efficient.

B.3.4 RBTree

Figure 11 presents the results for the Red Black Tree test candidate, where
rb insert is the method under test. From this line chart it is possible see that
both test case generators have similar results at the beginning. As the time
progresses, the difference becomes larger. A coverage of 50% was achieved
already after the first few test cases. After that, the curves begin to flatten,
whereas the line of RuTeG is steeper than the line of the random test case
generator. RuTeG was able to find test scenarios to achieve full coverage, while
random testing achieved an average coverage of 88%.

The values inserted into the tree can be of any type, as long as they are
comparable. This means, that possible types are for example strings and nu-
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Figure 11: Line chart of the results for the RBTree test candidate - rb insert

meric values. However, to cover the complete method under test, a sequence of
insertions is required, by using types that are comparable among themselves.
As long as there is only one value, there will never be a rotation within the tree.
Therefore, the advantage of RuTeG compared to the random test case generator,
is that individuals with an adequate method sequence will most likely remain
within the population. The sequence can be extended through the combination
of other individuals or through the mutation phase, which hopefully leads then
to the solution. On the other hand, the random test case generator starts every
time from scratch.

B.3.5 Bootstrap

Figure 12: Line chart of the results for the Bootstrap test candidate - bootstrap

Figure 12 shows the results for the Bootstrap test candidate, where boot-
strapping is the method under test. A difference between the two test case
generators can already be observed at the beginning. RuTeG has a steeper
curve compared to random testing, which means that it was able to find quicker
solutions. Also in the final average coverage there is a difference observable.
RuTeG could find test scenarios to achieve full coverage, whereas the random
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test case generator achieved an average coverage of 86%.
The method under test doesn’t require any previous initialization to achieve

full coverage, thus the method sequence of the test scenario is irrelevant. How-
ever, the method requires a number of parameters. The first argument is an
array of sample data, followed by a number of numerical values that affect
the behaviour of the method. The difference between the two results can be
explained of RuTeG’s capability to reduce the domain of possible input type
combinations, while the other test case generator chooses any combination ran-
domly. Hence, RuTeG can focus on more problem specific data which leads to
a quicker solution.

B.3.6 RubyStat

Figure 13: Line chart of the results for the RubyStat test candidate - gamma

Figure 13 presents the result of the experiment with the gamma method
from the RubyStat test candidate. RuTeG and the random test case generator
were able to cover much code within a short time. However, finding test cases to
cover the remaining code required some more time. The average code coverage
achieved by RuTeg was 98%, while the random test case generator achieved an
average coverage of 92%.

One parameter of the method call is used in an equation that results in a
small ε value. This ε is then tested in a nested condition. While RuTeG couldn’t
cover this part in few exceptional cases, the random test case generator failed
almost ever. The reason for that is probably that RuTeG was able to maintain
individuals that satisfied the precondition and thus after several combinations
and mutations to find a value, such that the condition for ε was fulfilled. The
random test case generator however, lost track of such potential input values
and therefore it was harder to cover the specific code portion.
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B.3.7 RubyGraph

Figure 14: Line chart of the results for the RubyGraph test candidate - bfs

An additional data generator was defined for the graph library, to construct
a directed graph. The generator selects two vertices from a small given domain
and forms with these an edge. This is repeated multiple times, to obtain a set of
random size with different edges. Thus, the result of the generator is a random
graph.

Figure 14 shows the results of the experiment, where bfs is the method
under test. Both test case generator show a similar curve and differ only at the
end. With RuTeG it was possible to cover all lines of code, while the random
test case generator achieved an average code coverage of 93%.

The method traverses a graph in breadth first order. This is also possible if
the graph is not connected. In that situation, only vertices that are connected
with the starting point are traversed. Thus, there is no specific condition re-
quired in order to cover a certain portion of the code. The only critical condi-
tion to achieve full coverage, is to find a given vertex within the graph. This
is probably the main reason why both test case generator achieved a high code
coverage.

Similar is the situation for the dfs method, which has the same structure
and conditions as the bfs method, only that the graph is traversed in depth first
order instead of breadth first order.

Figure 15 shows the empirical result with the warshall floyd shortest paths
as method under test. Both test case generators show similar results and were
able to achieve full code coverage. There is no major difference observable
between the two generators.

The method under test applies the warshall-floyd algorithm to find the short-
est path between two vertices. Like in the previous case of the RubyGraph test
candidate, there is no specific method sequence required or strict condition
present.
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Figure 15: Line chart of the results for the RubyGraph test candidate - war-
shall floyd shortest paths

B.3.8 Ruby1.8

Figure 16: Line chart of the results for the Matrix test candidate - rank

Figure 16 shows the result obtained using the rank method from the matrix
standard library. It can be observed that the results at the beginning are similar
for both test case generators. After a code coverage of 70%, the two curves start
to deviate, where the dashed line from random testing becomes flatter than the
curve of RuTeG. The final average coverage achieved by the random test case
generator is 92%.

The rank method doesn’t require any parameters, but a proper initializa-
tion through the constructor. A matrix is represented as an array of numerical
arrays. The difference between the two test case generators may be, because
in case of RuTeG it was possible to disqualify individuals that were not cor-
rectly initialized, while many test scenarios produced by the random test case
generator led to exceptions.

Figure 17 shows the results from the exponential operation for rational
numbers, which is defined in the mathn standard library. A difference between
the results can be observed already at the beginning. RuTeG was able to cover
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Figure 17: Line chart of the results for the Mathn test candidate - ** (power!)

more code within a shorter time than random testing. In both situations, the
curves become flatter at the end. While RuTeG could achieve full code coverage,
the random test case generator has an average coverage of 96%.

The exponent, which is the parameter of the method under test, can be an
integer, real or rational number, which is handled differently by the algorithm.
RuTeG tries to examine many different type combinations at the beginning, and
then focus towards better solutions. This may be one reason because of the high
coverage at beginning. As the time progresses, the random test case generator
catches up with RuTeG, but has still a lower average coverage at the end.

B.3.9 RubyChess

Figure 18: Line chart of the results for the RubyChess test candidate - can-
BlockACheck

Figure 18 shows the empirical result from the RubyChess test candidate,
where canBlockACheck is the method under test. RuTeG, compared to the
random test case generator, was able to find quicker solutions that covered
more code. After a code coverage of 75%, the curve increases only slowly. Both
test case generators failed to achieve full coverage. However, the average code
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coverage achieved by RuTeG is higher than the coverage achieved by random
testing.

The method under test required a previous initialisation of the chessboard
and an attackmap. Thus an important factor for the code coverage, is an ade-
quate sequence of method calls. The argument passed to the method under test
is used to specify a certain position on the board. The reason why RuTeG was
able to cover more code, was probably because individuals that were able to set
up a possible chess situation, remained in the population. While the method
sequence was kept or slightly modified, the data passed to these method invo-
cations changed with the time, and thus it was possible to generate different
scenarios. However, both generators failed to cover code, that was deeply nested
with a combination of multiple and strict conditions.

Figure 19: Line chart of the results for the RubyChess test candidate - move

Figure 19 presents the results from the RubyChess test candidate, where
move is the method under test. From this line chart can be seen, that both
data generators were able to cover already at the beginning more than 50%
of the code. However, the random test case generator hardly found new test
scenarios such that the code coverage increased, while on the other hand, the
curve of RuTeG increases slowly with the time. Also in this case, both test case
generators failed to achieve full code coverage.

The method under test requires a specific sequence of method invocations to
bring the object to a certain state. Thus, the difference between the two results
may be explained similar as in the previous case. The behaviour of the method
under test was mainly depended on the internal state of the object, rather than
the input value for the argument.
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Appendix C

Appendix C concludes the thesis with the discussion (Section C.1)
of the key findings with respect to the central research question,
highlights the strengths and limitation of the study, and presents
some possible direction of future work (Section C.2).
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C.1 Discussion

In this study, we presented a possible solution to automatically generate test
cases for a dynamic programming language. Furthermore, the generation of
input values is not limited on numbers and string values, but can produce dif-
ferent complex types of input data. We implemented a tool (RuTeG) in Ruby,
that applies GA to produce test scenarios, with the goal to achieve full code
coverage.

RuTeG was tested in an experiment in which the outcome was compared
with the results of a random test case generator. The results show that the
presented approach offers a possibility to automatically generate test cases for a
dynamic programming language. In most of the cases, RuTeG could cover more
code and find quicker solutions compared to the random test case generator.
A clear improvement was not always observable, but for all test candidates,
RuTeG was at least as efficient as random testing. There was no situation in
which the random test case generator outperformed RuTeG.

A weakness of RuTeG could be observed in the generation of method se-
quences, especially when there is a strong dependency between the methods,
such that a specific order is required. As long as there are only few methods
that play an important role to satisfy a certain condition, it is possible to find
adequate test scenarios. However, the more complex the method sequence be-
comes, the more difficult it is to find possible test cases. This could be observed
while applying RuTeG on the RubyTK library.

A further limitation of RuTeG, is the set of data generators. When the
standard or available data generators are not sufficient to find input values for
a certain argument, then the specification of an additional data generator is
required. RuTeG can not evolve data generators automatically such that better
input values are produced.

RuTeG is able to test methods with arguments that must be specified, argu-
ments that have a default value, and arguments of variable length. An unsolved
problem is still the generation of code blocks, which is a portion of context
related code. This code depends strongly on the implementation, and is dif-
ficult to generate automatically. The current version of RuTeG generates an
empty code block if required. This however doesn’t guarantee the generation of
successful test scenarios.

If we compare the implementation of RuTeG and the random test case gen-
erator, then it is definitely the latter which stands out in its simplicity, because
there is no heuristic attempt to search for better solutions. The core of RuTeG
is the Test Case Generator, which implies the GA. Together with the algorithm
specific functionalities, such as the selection, combination and mutation, but
also the definition of the individual and the fitness function, the size comprises
780 SLOC. Not included are the Analyser, Test Case Executor, and the different
data generators, which remain the same for both test case generators.

The applicability and efficiency of the tool was tested in the experiment on
14 test candidates. Some test candidates are code snippets that were often
used in many testing papers [25, 18, 12]. Other test candidates are taken from
the Ruby standard library and open source projects, because we wanted to test
the tool on more realistic and complex code examples.

The Ruby Standard library consists of a number of classes, which were used
to search for complex test candidates. However, methods with the highest
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cyclomatic complexity are parsers. A parser may have many control structures
to respond differently for each keyword, but can not really be considered as a
challenging test candidate. Other methods with a relatively high cyclomatic
complexity have basic types as arguments. Hence, it was difficult to find test
candidates that met our expectations. Therefore we extended our search to
open source projects to find test candidates with different complexity and input
data.

Apart from the test candidates mentioned in the experiment, we applied
RuTeG on other classes and methods from the Ruby standard library. For some
methods it was never possible to achieve full code coverage, even after repeating
the tests several times. After analysing the reason why it failed to cover specific
portions of the code, we could locate some errors. This was due to wrong
computations and the usage of undefined variables, which results in exceptions
and thus to uncovered code. This or similar cases show when and how the
application can help to improve the quality of the code. An open problem is
still the so called test oracle problem. This means that it is not possible to test
the result of a test case according to the formal specification.

In this study we wanted to identify which characteristics are typical for a
dynamic programming language and how they affect the automatic gener-
ation of test cases. We selected Ruby for the implementation of our tool. One
characteristic of Ruby, which can also be found in other dynamic programming
languages, is its reflective ability. This makes it easier to collect relevant infor-
mation about classes and methods at runtime. In such a situation it doesn’t
matter, where parts of a class are defined, as long they are available when the ob-
ject is created. Thus, methods can be defined in different modules and included
within a class. All these methods are available during runtime. RuTeG makes
use of this ability to search for available methods that may change the internal
state of an object. RuTeG identifies also the kind of arguments, whether its
specification is required or if they have a default value associated. Arguments
can also have a variable length or require a code block. This information is
collected and available at runtime.

Another characteristic, that many dynamic programming languages have in
common, is ”duck typing”. Objects are described by what they can or can not
do, instead of being associated to a specific type. This makes it difficult to
identify the input data for method invocations, also because an argument can
be used in different ways. Often methods behave differently, depending on the
argument’s current type. RuTeG presents a possible approach to classify such
applicable type combinations and to disqualify inappropriate types.

Throughout the experiment it was possible to identify different kinds of
complexity. One concerns the input type of data. Basic types are easier
to generate than objects that consists of multiple values. In the latter case,
a single value or a combination of values can be decisive to satisfy a given
condition. Changing one value may modify the entire structure or meaning of
an object. This was observable for the RubyGraph test candidate. If we consider
for example a cyclic graph, then the removal of a single edge may result in a
completely different graph and thus have an affect to the executed code.

But also the usage of basic types may become quite complex, especially
when there is only a small solution space, in which a certain condition can
be satisfied. This may concern single arguments, but also a combination of
arguments, which is the case for the triangle test candidate. In that situation,

C-3



each argument depends on other values, and only if all three arguments have the
same positive numerical value, then it is possible to form an isosceles triangle.

Another complexity factor is the sequence of method invocations. This may
concern an object passed as argument, but also the object under test. Often it is
not the input value that determines whether a specific code portion is executed,
but the internal state of an object. In order to satisfy a certain condition, it may
be necessary to call a specific method multiple times. But also the sequence of
method calls may increase in complexity, especially when there is a dependency
between each method, such that a specific order is required. An example, in
which the method sequence plays an important role, is the RubyChess test
candidate.

RuTeG addresses the different kinds of complexity with the definition and
selection of specific data generators and the evolution of test candidates. This
can help to find additional test cases that contribute to a higher code coverage,
and is probably the reason for the better results in the experiment compared to
random testing.

It is important to ensure the correctness of the empirical results and to avoid
a misleading conclusion. Statistical conclusion validity is related to the reliabil-
ity of the observed results. In our experiment we tested each test candidate 30
times, to obtain a good estimated result and to make sure that the data was
consistent. The results were then presented as the average of all test runs. In
addition we applied the Student’s t-test, to analyse the statistical significance.

A possible threat to internal validity may be the comparison of the results
with the random test case generator. There are different possibilities to im-
plement such a generator. The implementation of the used random test case
generator selects randomly one of the available data types and existing data
generators, to produce a possible input value. This may not be the natural
solution for static programming languages, where the input type is known and
values randomly generated by a selected data generator. However, for dynamic
programming languages, the situation differs, since we can not know which types
are valid. Therefore, the random test case generator must randomly choose be-
tween all available data generators, if we want the same level of automation.
This in turn may have some disadvantages for the random test case generator.
The larger the set of available data generators, the less efficient is the random
test case generator. On the other hand, RuTeG learns during the search process
to distinguish between better and weaker data generators and applicable type
combinations, and can therefore focus on more promising solutions.

Furthermore, it should also be mentioned that we applied only GA as a
heuristic search algorithm to generate possible test cases. We do not know how
other search techniques perform, such as hill climbing, simulated annealing or
tabu search, to name but a few. Even if they cannot achieve a higher coverage,
it may be possible that they find different solutions quicker.

Construct validity addresses the issue whether a test measures what it claims
to measure. A way to ensure construct validity, is to use multiple and different
measures that are relevant for the purpose. We wanted to test the performance
of the implemented tool on a number of test candidates. Therefore we measured
the time that was needed to achieve a certain level of code coverage. In addition
we wanted to test the quality of the tool, which was done by measuring the
coverage achieved by the generated test cases.

External validity is related to generalizability. RuTeG makes use of Ruby’s
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reflective ability. This is a characteristic that many dynamic programming lan-
guages have in common, whereas the information that they provide may differ
from Ruby. Thus, RuTeG is partially a Ruby specific implementation. Further-
more, RuTeG applies the ParseTree to collect some of the relevant information
at runtime, which is a Ruby tool that presents the code in an abstract syntax
tree using S-expressions. The collected information can probably be obtained
also in other dynamic programming languages, but in a different way. However,
the core of RuTeG, namely the test case and data generator, is independent
from Ruby specific code and thus applicable in any other dynamic program-
ming language.

Another possible threat to external validity could be the selection of test can-
didates, which was not chosen randomly from the population, since we wanted to
have candidates to cover different criteria. Therefore we cannot be sure whether
the sample is representative of the Ruby code, but we can use the results as an
indicator.

C.2 Conclusion

In this study we implemented RuTeG, a tool to automatically generate test
cases for the dynamic programming language Ruby. RuTeG can be used for
different kinds of input values. The system was tested on 14 test candidates,
which differ in their code complexity and structure as well as the complexity of
input data they require. The result of the experiment showed the applicability
of the tool and that it was possible to find test cases to cover specific portions
of code.

RuTeG could achieve full code coverage in 11 of 14 cases, while the random
test case generator could find test scenarios that cover all the code only in 4 of
14 cases. The statistical significance of the difference in the results was tested by
a student’s t-test. A difference was also observable in the time required to find
possible test cases, where RuTeG could find solutions quicker than the random
test case generator.

There are different kinds of complexity that have a major effect on the
generation of tests cases. These are self-defined types, complex and compound
data structures, input data with a small solution space, and the method sequence
to change the internal state of an object.

The complexity of method sequences is a sensitive factor in the automatic
generation of test cases. The more complex the method sequence becomes, the
more difficult it is to find possible solutions. Very complex and dependable
method sequences may not occur frequently, but in such situations, both test
case generators will most likely fail to achieve high code coverage.

The goal of RuTeG is to find test scenarios in order to cover as much code
as possible. However, code coverage is not a very strong coverage criterion. A
possible future step would be aiming for branch or condition coverage. The
reason why RuTeG supports only code coverage, is because there is no tool
available for Ruby that measures branch or condition coverage. Therefore, for
code coverage it was possible to fall back on existing tools.

The current version of RuTeG searches for applicable type combinations,
and then for each type selects an adequate data generator. This intermediate
step is not necessary. A more efficient solution would be to use directly the
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set of available data generators. In this case the system would search for a
combination of applicable generators instead of data types, which may improve
the performance but also the quality of generated test cases.
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