
Master Thesis

Software Engineering

Thesis no: MSE-2009-02

February2009

School of Engineering
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

Towards Optimization of Software V&V

Activities in the Space Industry

Ehsan Ahmad

Bilal Raza

[Two Industrial Case Studies]

 ii

This thesis is submitted to the School of Engineering at Blekinge Institute of Technology
in partial fulfillment of the requirements for the degree of Master of Science in Software
Engineering. The thesis is equivalent to 2 x 20 weeks of full time studies.

Contact Information:

Author(s):
Ehsan Ahmad
Address: Folkparksvagen 18, Ronneby 37240, Sweden
E-mail: ehsanahmad@gmail.com

Bilal Raza
Address: Folkparksvagen 18, Ronneby 37240, Sweden
E-mail: bilalraza001@gmail.com

External advisor(s):
Tanja Nordebäck
Swedish Space Corporation AB
Address: P.O Box 4207, SE-171 04 Solna, Sweden
E-Mail: tanja.nordeback@ssc.se

University advisor(s):
Dr. Robert Feldt
School of Engineering

School of Engineering
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

Internet: www.bth.se/tek
Phone : +46 457 38 50 00
Fax : + 46 457 271 25

i

ABSTRACT

Developing software for high-dependable space

applications and systems is a formidable task. With new

political and market pressures on the space industry to

deliver more software at a lower cost, optimization of

their methods and standards need to be investigated.

The industry has to follow standards that strictly sets

quality goals and prescribes engineering processes and

methods to fulfill them. The overall goal of this study

is to evaluate if current use of ECSS standards is cost

efficient and if there are ways to make the process

leaner while still maintaining quality and to analyze if

their V&V activities can be optimized. This paper

presents results from two industrial case studies of

companies in the European space industry that are

following ECSS standards and have various V&V

activities. The case studies reported here focused on

how ECSS standards were used by the companies and

how that affected their processes and how their V&V

activities can be optimized.

Keywords: Optimization, Verification and Validation,
Space Industry, Dependable Software, ECSS Standards

ii

CONTENTS

Paper

I. Introduction 01
II. Case Companies 01

A. RUAG Aerospace Sweden AB 02
B. Space Division at Swedish Space Corporation 02

III. Design of the Study 02
A. Research Questions 02
B. Research Design 02

IV. Results And Analysis 03
A. Web-based Questionnaire 03
B. Interviews and Document Analysis 04

V. Challenges / Issues 04
A. ECSS Standards 04
B. VAs In Practice 06
C. Efficiency Of VAs 07

VI. Challenge-Cause Analysis 08
VII. Recommendations based on Identified Challenges 08

A. ECSS Standards 08
B. Faults-Slip-Through Measurement 08
C. Strategy For Selection Of Cost-Effective VAs 08

VIII. Validity Threats 10
IX. Conclusion 11

Appendix A

A.1 Design of Study A-2
A.2 Web-based Questionnaire A-3
A.3 Semi-structured Interviews A-4

Appendix B

B.1 Introduction B-2
B.2 ECSS-E-40 (1B, 2B) B-2
B.3 ECSS-Q-80B B-3

Appendix C

C.1 Introduction C-2
C.2 Data Collection C-2
C.2.1 Document Analysis Results C-2

iii

C.2.2 Interview Analysis Results C-23
C.2.3 Web-based Questionnaire Analysis Results C-26

Appendix D

C.1 Introduction D-2
C.2 Data Collection D-2
C.2.1 Document Analysis Results D-2
C.2.2 Interview Analysis Results D-9
C.2.3 Web-based Questionnaire Analysis Results D-18

Appendix E

E.1 Discussion E-2

Appendix F

F.1 Future Work F-2

iv

LIST OF TABLES

I. Theme 1: ECSS Standards 03
II. Theme 2: Effectiveness of VAs 03
III. Theme 3: Effort required for VA 04
IV. Theme 4: Change in effort for VAs in ECSS is not relevant 04
V. Challenges/ Issues related to ECSS Standards 05
VI. Challenges / Issues related to VAs in practice 07
VII. Challenges / Issues related to efficiency of VAs 07
VIII. Recommended Solutions for different stakeholders 10
IX. Organization of Web-based Questionnaire A-3
X. Organization of Interview Questions A-4

v

LIST OF FIGURES

1. Research Flow in relation with research questions 03
2. Challenge-cause analysis for SSC 09
3. Challenge-cause analysis for RUAG 09
4. Organization of Research A-2
5. SATLAB configuration 1 C-5
6. SATLAB configuration 2 C-6
7. SATLAB configuration 3 C-7
8. SGEO AOC Core Development and Test logic C-15
9. SGEO AOC Core Unit Test C-19
10. SATLAB Environment C-21
11. Software development life cycle D-4
12. IDD with internal reviews D-6
13. Comparison b/w SSC and RUAG – ECSS standards E-2
14. Comparison b/w SSC and RUAD – effectiveness of VAs E-3
15. Comparison b/w SSC and RUAD – effort for VAs E-3
16. Comparison b/w SSC and RUAD – change in VAs E-4
17. Strategy for using FST and Strooper’s et al Model E-5

vi

ABBREVIATED TERMS

PDR…………………Preliminary Design Review
CDR…………………Critical Design Review
DDR…………………Detailed Design Review
SAT………………….Site Acceptance Test
IDD………………….Integration-driven Development
TDD…………………Test-driven Development
PSS…………………..Procedures, Standards and Specifications
ECSS………………...European Cooperation for Space Standardization
FST…………………..Faults-slip Through

vii

ACKNOWLEDGEMENTS

First of all we would like to thank Dr. Robert Feldt, our thesis advisor, for his

constructive feedback and ideas throughout this study. We are also grateful to Tanja

Nordebäck of Space division at Swedish Space Corporation (SSC), our industrial

supervisor, and Annalena Johansson of RUAG Aerospace Sweden AB (RUAG) for

their continuous support during our visits to their facilities. Also, many thanks to the

employees of SSC and RUAG for taking the time out from their busy schedule and

providing us with very valuable information during the interviews. We would like to

thank Swedish National Space Board for supporting this work.

Finally, we would also like to thank our parents and siblings for always being there

for us.

viii

HMT- FORMAT

This thesis is structured according to 'Hybrid Master Thesis' (HMT) format,

proposed at BTH in 2007. The main idea is to have a hybrid of ACM/IEEE paper

and traditional master thesis. The main motivation behind this format is to increase

the number of thesis which can be published and to reduce the difficulty of over

viewing large reports. According to this format the thesis is divided into two main

parts, the first part follows the ACM/IEEE paper format which focuses on relevant

areas and key findings of the thesis and is comprised of 10-15 pages. The latter part

consists of number of appendices which cover the different aspects in detail, such as

methodology and results.

1

Abstract— Developing software for high-dependable

space applications and systems is a formidable task.

With new political and market pressures on the space

industry to deliver more software at a lower cost,

optimization of their methods and standards need to be

investigated. The industry has to follow standards that

strictly sets quality goals and prescribes engineering

processes and methods to fulfill them. The overall goal

of this study is to evaluate if current use of ECSS

standards is cost efficient and if there are ways to make

the process leaner while still maintaining quality and to

analyze if their V&V activities can be optimized. This

paper presents results from two industrial case studies of

companies in the European space industry that are

following ECSS standards and have various V&V

activities. The case studies reported here focused on how

ECSS standards were used by the companies and how

that affected their processes and how their V&V

activities can be optimized.

I. INTRODUCTION

Software development projects for space applications
and systems tend to have different dynamics than
software projects in other domains. Development of
software for space applications poses additional
challenges due to its inherent requirement that the end
product must be highly dependable. It is a formidable task
to develop such systems because of the specific space
operations and the focus on reliability and dependability.
In particular, reliable protocols differentiate them from
other systems [1].

The industry has a long tradition of developing
standards that strictly set quality goals and prescribes
engineering processes and methods to fulfill them. The
European Cooperation for Space Standardization (ECSS)
has developed a single set of standards for the European
space projects [2, 3]. These standards are derived from
PSS-05, an earlier space standard which were more
prescriptive, demanded heavy documentation and favored
waterfall and incremental development models [4]. Since
PSS-05 was a primary input for ECSS, activities at space
industry have the legacy of PSS-05.

The quality of software is very much dependent upon

Verification and Validation Activities (VAs) [19]. Both
state-of-the-art and state-of-the-practice has proved that
using combination of different VAs is more effective than
compared to a single VA [20, 21, 22]. According to [5],
verification and validation of critical systems like
satellites in a cost effective manner is a challenging task
and optimal VAs are necessary to ensure quality by
maximizing success in a limited budget. There is a need
to optimize VAs by understanding the overlapping and
variability between them, without losing quality. Defect
detection completeness and successful integration of
different autonomous subsystems are the major
requirements for ensuring the quality of such systems.
Each autonomous subsystem can be verified by different
VAs. These inter and intra subsystem verification
processes results in complex and multifaceted quality
assurance process for the whole system.

Space industry like any other industry is evolving and
constantly facing new political and market pressures. The
trend has been that the traditionally high quality
requirements remain but with increasing demands for
lower development costs and faster delivery times. This
requires an in depth analysis about their VAs and their
approaches towards ECSS standards.

This paper presents various challenges which the space
industry is facing due to the demands of ECSS, especially
in regards to VAs. There are three main contributions of
this paper. First, it presents the identified and prioritized
challenges in VAs of different space organizations.
Secondly, it presents the effects of ECCS standards on
VAs and finally discusses the proposed solutions.

The next section includes the introduction about the
two companies, while Section III explains the design of
the study. Section IV describes the results and analysis
and Section V discusses main challenges and issues.
Section VI explains challenge-cause analysis of each
company, Section VII outlines the solutions based upon
identified challenges and Section VIII concludes the
study.

II. CASE COMPANIES

The research was conducted at two Swedish space
companies which are developing software and hardware

Ehsan Ahmad, Bilal Raza

Towards Optimization of Software V&V Activities in

the Space Industry

Dept. of Systems and Software Engineering

Blekinge Institute of Technology

SE – 372 25 Ronneby, Sweden

2

for the space industry. Following is the brief introduction
about them.

A. RUAG Aerospace Sweden AB

RUAG Aerospace Sweden AB (RUAG) was formerly
known as SAAB Space AB but was recently acquired by
RUAG Aerospace, and thus changed their name. RUAG
has a very long and vast experience concerning design,
development and delivery of both hardware and software
for computer and data handling related products in space
programs. The main product areas are data management
systems, fault-tolerant computers and processor products,
payload control computers, data processing and small
mass memories. The software developed by RUAG for
these computers is in the range from small boot software
to full application software, but the main focus is on
embedded and real-time software. The software
development process is based on the ECSS standards,
mixed with an integration driven development approach.

B. Space Division at Swedish Space Corporation

The Space Division at the Swedish Space Corporation
(SSC) develops software and hardware for space
applications, such as for example the satellites Prisma,
Small-Geo and Smart Olev. They are system integrator
and supplier for small and micro-satellites. They are also
specialized in developing attitude orbit and control
systems, on board data handling units etc. In recent years
they have changed their software processes to be more
agile, by using Scrum as a project management model and
Test-driven development as an engineering model [6, 7,
8]. In a recent report we have reported on the match
between Agile software development methodologies and
ECSS [9].

III. DESIGN OF THE STUDY

A. Research Questions

In this study, we aim to answer following questions:

RQ1: What is efficiency of current V&V activities used in
space industry?

By answering this question, we shall be able to identify
current VAs used in space industry and their efficiency.
Defect logs and related documents will be analyzed for
the purpose.

RQ2: What are the effects of ECSS standards on V&V
process?

Companies developing space applications for European
Space Agency (ESA) have to follow ECSS standards.
Answer to this question will help us to understand the
requirements of ECSS standards and how it affects quality
of the software and efficiency of the software
development team.

RQ3: What are the challenges in the V&V process of
space industry?

RQ4: Is it possible to propose solutions for challenges
identified in RQ3?

RQ5: Are the proposed solutions applicable?

B. Research Design

The experience drawn on in this research comes from
the work in two space companies. It is part of a project
launched at RUAG Aerospace Sweden AB (RUAG) and
Swedish Space Corporation (SSC) to create more efficient
VAs, in general, and within ECSS projects, in particular.
We focused on experiences they had in their ECSS
projects and VAs. To answer the above questions the
study is organized in three steps; Preliminary
Investigation, Analysis and Solutions and Solutions
Evaluation. Figure 1 further explains the organization of
the study in relation to research questions.

In preliminary investigation, web based survey and in-
depth review of documents of SSC and RUAG was
conducted to get a certain level of understanding about
their VA’s and their efficiencies. The documents
provided the description of processes and the software
tools they use. Literature review of state-of-the-art is
carried out, simultaneously, to identify common defect
types, defect detection techniques and strategies to
combine those techniques.

According to [11, 12], literature survey of theoretical
knowledge and published practices must be
complemented with industry observation to find out the
commonalities of a specific problem.

Based upon the results of web based survey and
document analysis for the semi-structured interviews
a questionnaire is developed for the semi-
structured interviews with VAs experts of SSC and
RUAG. These interviews helped in getting insight
knowledge about the variations, artefacts,
and complexities of the state-of-the-practice.

In Analysis and Solution Identification, a connection
between VAs and defect types, effects of ECSS standards
on VAs, issues/challenges in V&V process and possible
solutions are identified.

Initially, it was also planned to evaluate solutions in
two steps: First, they will be presented in both SSC and
RUAG and feedback will be collected from V&V experts
using questionnaire and informal discussions. Solutions
will be further refined accordingly. Secondly, a detailed
evaluation plan including an experiment will be designed
for both the companies. Due to the time limitation, we are
only able to complete the first step of this phase.

 To increase the validity of the results we have used
triangulation, i.e. a variety of research methods. We
combined a questionnaire, document analysis and semi-
structured interviews.

3

Web-based Questionnaire

A web-based questionnaire was administered to
relevant personnel at the two case companies. The
questions determined their role and activities, their
knowledge and views on ECSS in particular and on VAs
in general. A total of 37 respondents (18 at SSC and 19 at
RUAG) answered the questionnaire. The answer
frequency was 32.73% at SSC and 59.38% at RUAG,
total of 42.53%. Partly this is explained by the fact that at
SSC it was distributed more widely; some of the receivers
might not have been the right target group.

Semi-structured Interviews

Semi-structured interviews were conducted with a total
number of 17 interviewees (9 at SSC and 8 at RUAG).
The interviews were between 45 and 80 minutes in length.
One researcher posed questions from a prepared list and
the other researcher recorded the interviews. The
interviews were transcribed and individually summarized
by the two researchers. They summarized the
transcriptions independently and then discussed their
results until consensus was reached. The criticality level
for each of the issues and challenges uncovered, were
judged on a scale from General, Important to Critical,
based on how frequently it was mentioned by different
respondents and how important they judged it to be.

Document Analysis

Documents like Software Development Plan (SDP),
Software Verification and Validation Plan (SVVP) and
Software Quality Assurance Plan (SQAP) of both the
companies were analyzed. Initially, these documents

provided the basis for interviews and later they were
complemented with the data of questionnaire and
interviews.

IV. RESULTS AND ANALYSIS

A. Web-based Questionnaire

To compare questionnaire results of both companies,
weighted average for each theme is calculated. Rest of the
section presents this comparison in tabular form.

Theme 1: ECSS Standards

The theme1 of the survey is related to ECSS standards.
The responses were given weightage from 1 to 5, where 1
being the lowest and 5 being the highest. Table I
summarizes the results about theme1

It shows that there is a small difference in the

Fig 1: Research flow in relation to research questions

TABLE I
THEME 1: ECSS STANDARDS

ECSS Issues SSC RUAG

Knowledge
2.1

(I know roughly what
it is about – 2)

2.9
(I know its contents and
how it affects the SWD

activities – 3)

Effect on SWD
1.8

(Low – 2)
2.9

(High – 3)

Effect on SW
quality

2.9
(Somewhat Positive –

3)

3.4
(Somewhat Positive – 3)

Effect on
efficiency of

SWD

2.4
(Somewhat Negative –

2)

2.0
(Somewhat Negative – 2)

4

knowledge distribution of ECSS among both companies,
for SSC the average is more towards ‘they know roughly
what it is about’ and for RUAG it is more towards ‘they
know its contents and how it affects the SWD activities’.
SSC has an opinion that the effect of ECSS on SWD is
low but RUAG thinks it is high. It also shows that both
companies agree that ECSS has ‘positive effects’ on the
SWQ but the effects on the efficiency of SWD is
‘somewhat negative’.

Theme 2: Effectiveness of VA’s

The theme2 of survey is related to the effectiveness of
VAs. The responses were given weightage from 1 to 4,
where 1 being very ineffective and 4 being very effective.
Table II summarizes the results about theme2.

For RUAG the most effective VA’s are ‘code review’

and ‘validation testing’ whereas for SSC ‘unit testing’ and
‘integration testing’ are more effective than other VAs.
The least cost effective according to RUAG is
‘acceptance testing’ whereas for SSC it is ‘code review’.

Theme 3: Effort required for VAs

The theme3 of survey is related to the effort required
for VAs. The responses were given weightage from 1 to
4, where 1 being ‘very low effort’ and 4 being ‘very high
effort’. Table III summarizes the results about theme3.

For RUAG ‘validation testing’ and ‘system testing’
requires more effort compared to other VA’s whereas for
SSC it is ‘system testing’. Both the companies think that
‘requirements review’ and ‘design review’ requires less
effort compared to other activities.

Theme 4: Change in effort for VAs if ECSS is not relevant

The theme4 of survey is related to their opinion about
the change in effort for VA’s, if ECSS is not relevant. The
responses were given weightage from 1 to 4, where 1
being ‘wouldn’t do activity at all’ and 4 being ‘would put
more effort on’. Table IV summarizes the results about

theme4.
RUAG would like to put effort on ‘integration testing’

and less effort on ‘acceptance testing’ whereas SSC
would like to put more effort on ‘unit testing’ and
‘requirements review’ and less effort on ‘integration
testing’.

B. Semi-structured Interviews & Document analysis

 The results from the semi-structured interviews and
document analysis are presented in Section V as the main
challenges and issues.

V. CHALLENGES AND ISSUES

A. ECSS Standards

Table V summarizes the main issues and challenges
about ECSS which were discovered during the case
studies. They are sorted from most critical to less critical.
The empty cells indicate it was not an issue or challenge
for that particular company.

Reusability and ECSS standards

RUAG reuses document templates for ECSS between
projects but have issues in reusing source code. ECSS
allows for reusability but other requirements of the
standards make it hard to actually reuse. This is because
the reused part of the software has to be fully verified and

TABLE III
THEME 3: EFFORT REQUIRED FOR VAS

VAs SSC RUAG

Requirement Review 2.6 2.6
Design Review 2.6 2.4
Code Review 2.6 2.8
Unit Testing 3.1 3.2
Integration Testing 2.8 2.9
System Testing 3.3 3.6
Validation Testing 3 3.8
Acceptance Testing 2.8 2.7

TABLE II
THEME 2: EFFECTIVENESS OF VAS

VAs SSC RUAG

Requirement Review 3.0 3.1
Design Review 3.0 2.8
Code Review 2.7 3.4
Unit Testing 3.5 3.1
Integration Testing 3.5 2.7
System Testing 3.4 3.1

Validation Testing 3.0

3.3

Acceptance Testing 2.9 2.2

TABLE IV
THEME 4: CHANGE IN EFFORT FOR VAS, IF ECSS IS NOT RELEVANT

VAs SSC RUAG

Requirement Review 3.4 3.3
Design Review 3.1 3
Code Review 3 2.6
Unit Testing 3.4 2.5
Integration Testing 3.3 3.6
System Testing 3.1 2.7
Validation Testing

3 2.7
Acceptance Testing 3.1 2.1

5

validated in the new context. Sometimes this generates
more work than actual implementation from the
beginning. The European space industry have
traditionally been skeptical towards the reuse of source
code since that was one of the main causes of the Ariane 5
mid-air explosion [10]. However, there have been recent
results in clarifying the situation and proposing updates to
the standards [11]. It is not clear if and how these
proposed updates affect cost effectiveness. High costs of
compliance when reusing software defeats the purpose of
reuse.

Both companies agree that since space projects are
similar to their previous projects they can benefit a lot
from reusing artifacts from the previous projects, but they
are behind and need improvements in this regard. In case
of Commercial-off-the-Shelf (COTS) Softwares, it is not
justifiable to verify them as per the requirements of ECSS
Q80 because they have been used by other companies and
continuously verified and validated.

Documenting compliance consumes QA resources

The major problem the two companies have is the high
requirement on detailed documentation and proofs of
standard compliance, which takes resources away from
actually performing quality assurance and verification and
validation activities. This does not seem to be addressed
by the ECSS standards update that is in progress. Rather
the latest ECSS update, version C, is more detailed and
specific on which processes and methods must be
followed, how things are to be performed and requires
more detailed documentation. It seems to be inspired by
the Galileo Software Standard (GSWS) which, like ECSS,
has extensive backing from European Space Agency
(ESA). RUAG considers the GSWS to be more formal
and prescriptive than the ECSS, thus having a potentially
higher cost for compliance.

ECSS can be misused as a marketing tool when the
developing organizations focus on certain activities just to

show off they are fully compliant with it. This adds to the
unnecessary cost as some of these activities don’t affect
the quality.

Interpretation Differences

Another problem with ECSS is that it can be
interpreted differently by different people and
organizations. Even though it creates a common
understanding between customers and suppliers, this
understanding is too dependent on the actual persons
involved. For example, at RUAG, there have been
problems when the different reviewers from the customer
have different interpretations of what the ECSS standard
requires. This has been a problem when the reviewers are
changed during a project or when different reviewers
reviews different parts of the project; much rework has
been the result. This takes away resources that could have
been put into increasing the quality of the software
instead. The problem is even larger if we consider
multiple projects. The interpretations and expectations on
the ECSS compliance can vary a lot between projects
even if the same prime customer is involved.

Incremental development and ECSS

It is difficult to work in increments when following
ECSS. This is because of a legacy in the standards of a
traditional, linear, waterfall process and because of the
requirement on external reviews. As long as they follow
the external reviews the customers allow an incremental
development process. However, the external reviews,
limits the extent to which the increment-driven
development can be used. For example, requirements
have to be assembled early in the project for the external
preliminary design review (PDR), so the incremental
approach can only be used for detailed design,
implementation and testing, not for the requirements.
Also, if the customers require a separate detailed design
review, the same limitation applies to detailed design and

TABLE V
CHANGES / ISSUES RELATED TO ECSS STANDARDS

Ids Challenge / Issue SSC RUAG

Reusability Documenting quality when reusing development artefacts Critical Critical
Resource-intensive Showing compliance takes resources from increasing quality Critical Important
Interpretation Difference in interpretation of ECSS Important Critical
Increments Limited support for (integration-driven) development in increments Critical
Galileo standard Differences between ECSS and Galileo Critical
Knowledge Distribution of ECSS knowledge in organization Critical
Innovation ECSS limits innovation in processes, methods and tools General Important
Inflexibility Hard to make changes / introduce new requirements during project Important
Requirements Documenting requirements for compliance proof Important

Tailoring Unclear how to tailor ECSS General

6

further constrains the use of increments. So there is a
mismatch with ECSS, if they go away from a waterfall
kind of process.

Differences with Galileo Software Standards

In some projects RUAG have been following the
Galileo Software Standards instead of ECSS. GSWS are
based on ECSS and can be considered a tailored version
of ECSS. But it tailored parts of ECSS that was open to
interpretation; thus it is less flexible. At RUAG, they
consider GSWS to be stricter but clearer than ECSS. They
are not as open to alternative approaches. By following
GSWS RUAG has changed their internal processes so that
they are now more ECSS compliant by default. One
important difference between the standards is that GSWS
requires independent module/unit testing; there is no such
requirement in ECSS.

Knowledge distribution

At SSC the ECSS knowledge is unevenly distributed
and concentrated on fewer individuals. The explanation
for this is that SSC have more projects where ECSS
compliance is not a requirement. Thus, developers are not
always in ECSS projects and get less experience with it.
Even so, this can create tension between different projects
and add to costs for showing compliance.

Effects on innovation

ECSS helps the companies making sure they do not
miss important aspects, but the standards make it hard to
introduce new processes, methods and tools. Primarily
this is because a lot of activities are done only to show
compliance which doesn’t affect the quality of software,
while still requiring lots of resources. Thus there is less
time to consider and implement improvement. A standard,
by its very nature, also restricts the introduction of
unknown methods and tools. As an example from SSC,
they are introducing model-driven development, with
automated code creation from models, to increase
productivity and quality, but it has not yet been fully
accredited by ESA. However, it is not an efficient use of
resources to have to prove code coverage and verify
automatically generated code.

Tailoring of ECSS

Tailoring of ECSS, according to project needs, is very
important but sometimes it is already done for RUAG by
their customers. They are at the lower level of recursive
customer-supplier cycle. This is a drawback because their
competitors can use it in other projects to their advantage.
Sometimes they are allowed to deviate a little from ECSS,
if the prime is confident in their work and has worked
with them before and they have a good relationship. In
that case they are able to focus on a lot of technical issues
which further improves the quality.

Inability to do tailoring of ECSS generates a lot of
work and extra costs. In case if customers are less

technical and have less knowledge about ECSS they may
ask to implement them as it is.
Inflexibility and documentation of requirements

At RUAG they find it harder to make changes to
requirements during an ECSS project. SSC has
successfully introduced more agile processes, also in their
ECSS projects, and does not seem to have the same
problems. However, a related problem at SSC is that they
are not clear on how to document requirements and
requirement changes in a way that compliance can be
shown.

ECSS favors water fall development methodology. It
has strict toll gates like preliminary design review (PDR)
and detailed design review (DDR) and they don’t allow
implementation before these reviews. RUAG wants to
have DDR in small steps focusing on parts which are to
be implemented and in some projects they have
successfully been able to do DDR and implementation in
parallel, depending upon the customers.

B. VAs in practice

Table VI summarizes the challenges and issues regarding
VAs in Practice

Unstable and non-testable requirements

Both companies have issues in writing good
requirements; they have certain guidelines to follow at
that level. Functional and non functional requirements are
more or less mixed when they get them from the
customers who often tend to forget some of the
nonfunctional requirements as well. There are three levels
of requirements at both companies. Mission level or
equipment level comes from the customer, which are then
broken down to system level requirements. The system
level requirements are then forwarded by the systems
manager to the developers who further break them into
implementation or unit level requirements. It is always an
issue to pass information from one level to another due to
communication gaps.

Defects in testing environment and tools

Both companies have had problems with in-house
tools. Sometimes it requires too much effort to improve
them according to project requirements. They use the
same environment and tools for other projects as well, but
with certain changes. The main components are the same
but these changes require a lot of effort. They also find
defects in their testing environment and tools and do not
generate software problem reports (SPRs) about them.

During the verification and validation they find defects
in the software due to these environments and tools,
sometimes they develop the tools and software in parallel.

Limited focus on integration testing of software

components

At RUAG they are not very good at integration testing
of software modules. They combine them with the
validation testing of hardware. One of the reasons is they

7

are mostly working with hardware drivers and in these
cases it is more efficient to test the integration of software
modules at the validation. But at the same time they also
built full application software, which requires testing
them separately.

Inadequate internal formal reviews and inspection

RUAG is very good at reviews and inspection and they
would even like to put more effort. It is the most cost
effective activity for them. The downside is the
dependence upon the person doing it and the list of issues
they check keeps on updating. SSC doesn’t focus too
much on reviews or inspection. They have very informal
checklists and have very limited reviews and inspection.

SSC values dynamic VA’s more. This is one of the
main differences in the approaches of the two case
companies. But they don’t have figures or measurements
to back this up that which activity is more effective in
finding defects in a cost efficient way.

More focus on structural coverage than Black box testing

In both companies, mostly the unit testing is done by
the developer himself. This also depends upon the
requirements from their customers. At RUAG, they focus
highly on coverage statistics. The focus of tests is more
towards structural coverage and white box testing.
Another problem is they are looking at what code does
instead of looking at what the code should do and test
that. SSC is now using more of test driven development,
so the person writing code will start by writing unit tests
and will focus more on black box perspective.

Test cases are not reviewed independently

At SSC, the developers are responsible for the
development and testing of units and there is no
independent verification of code or test cases at this stage.
There are chances that defects may be missed and slipped
onto later stages. RUAG has an independent review on
the code and sometimes they also have reviews for test
cases, depending upon the requirements from customers.
There are pros and cons of having complete independent
verification. There can have communication issues and
loss of information, if they have separate teams.

C. Efficiency of VAs

Table VII summarizes issues/challenges regarding
efficiency of VAs

Insufficient measurements

Both SSC and RUAG have insufficient measurements
in their VAs. They don’t measure the efficiency of
different activities and don’t even calculate the number of
defects found at different levels. They are not good at
measuring results of what they are doing and why they are
doing it. They don’t have a formal list which says this
category of faults should be detected at this stage and so
on. But they have more or less an implicit list for doing
unit testing.

Although, both companies do not have any
measurements, but RUAG have an opinion that more
defects are found in inspection and reviews than in
module testing. They spent a lot of time during unit
testing and its efficiency is low. However, SSC thinks that
unit testing brings more value. These companies are
interested in having metrics which are easy to use and
follow up but the problem is lack of statistics to be used in
them.

Faults-slip-through among different stages

In both companies they find defects which are not local
at the specific stage. At SSC the testing environment is
not fully representative of the target environment and it
takes extra time and effort to complete the activity. At
RUAG, they focus too much on coverage figures during
unit testing. Other reasons for faults to slip through are
tight schedules during the project. In such circumstances
they move away from optimal ways of doing things and
rush through them.

They don’t estimate the cost of finding defects in
different phases. A metric could be obtained through
reporting system or by expert judgments. If they evaluate
the costs of finding defects in different phases then an
improvement potential can be determined by calculating
the cost of finding defects in specific phase to the cost of
finding the similar defects in other phases. Hence, a total
improvement potential can be calculated.

Vague classification of defects

The classification of defects in both companies is very
vague. It is based upon the severity which is dependent
upon the person classifying defects. They use different
tools and reporting systems for this. In large projects they

TABLE VI
CHALLENGES / ISSUES RELATED TO VAS IN PRACTICE

Ids Challenge / Issue SSC RUAG

Requirements Unstable and non-testable requirements Critical Critical
Testing Environment Defects in testing environment and tools Important Critical
Integration Testing Limited focus on integration testing of software components Critical
Reviews and Inspection Inadequate internal formal reviews and inspection Critical General
Unit Testing More focus on structural coverage than Black box testing Important
Independent V&V Test cases are not reviewed by independent developer/ tester Critical

8

cover same things again and again and their processes
check similar things at different stages, which increases
the cost and don’t improve quality.

There is no clearly defined strategy about what kind of
defects should be captured at which stage. There is no
mapping between what type of tests a phase should cover
and which faults should be found when executing those
tests.

V&V experts are involved to the later stages only

V&V experts are not involved in early stages of the
project in both companies. This may result in unstable
requirements and cause problems later in the project as
the developers at unit level don’t have the full picture and
often the project managers don’t have the clear idea about
the technical constraints. If the validation team is
involved in early stages it would have been easier to
validate and even reuse things. There are different levels
of requirements which involve different teams and there
are communication issues between them.

V&V experts are considered second class engineers
and are not involved actively in the early stages of the
software development.

Inappropriate time for initial framework

At SSC, they don’t focus too much on requirements
review and spend less time during the requirements phase.
Sometimes they implement things which don’t connect all
the way up to the requirements. They also make
experienced guesses while implementation.

VI. CHALLENGE-CAUSE ANALYSIS

To better understand the dependencies among
challenges and to find their causes a challenge-cause
analysis is performed using Current-Reality Tree (CRT).
CRT considers multiple challenges at the same time and
is very helpful in improving system by identifying the
root causes of those challenges. The identified challenges
are called Un-desirable Effects (UDEs) are then traced to
root causes. Figure 2 represents the CRT diagram for SSC
while Figure 3 represents the CRT diagram of RUAG.
The boxes with yellow backgrounds are identified as
UDEs.

VII. RECOMMENDATIONS BASED ON IDENTIFIED

CHALLENGES

This section discusses the recommendations for how
the identified challenges can be addressed. By the help of
challenge-cause analysis we concluded that both
organizations are facing problems due to three main
causes; ECSS Standards, Faults-slip-through among
different stages and Inappropriate selection of cost-
effective VAs. Rest of this section discusses the
recommendation made by authors to cope with the
identified challenges.

A. ECSS Standards

Table VIII summarizes the recommended solutions for
different stakeholders in the ECSS standards. For each
challenge we list solutions in three different categories
based upon their relevance for: Development organization
(RUAG and SSC in this case), Customer (ESA or other
organization stating the requirements for a development
project) and ECSS (the standards body).

B. Faults-slip-through measurement

Early involvement of V&V experts at both companies
can improve their requirements phase. SSC should focus
more on reviews and inspections and having appropriate
time for initial framework will make the requirements
more stable. Faults-slip-through among different stages is
one of the biggest challenge for both the case companies
and the main reasons are defects in the testing
environment and inappropriate selection of VA’s. In
RUAG they focus more on coverage figures, by following
test-driven development they can have focus on the black-
box perspective and there will be less chances that faults
will slip through to the later stages. ECSS on one hand
improves the quality and at the same time it takes away
many of the resources from quality by prescribing certain
activities which doesn’t have any positive impact such as
documents and proofs that certain VAs are performed
accordingly. Insufficient measurements and vague
classification of defects also have an impact on faults to
slip through. Both the companies are looking for simple
measurements so they may evaluate the efficiency of their

TABLE VII
CHALLENGES / ISSUES RELATED TO EFFICIENCY OF VAS

Ids Challenge / Issue SSC RUAG

Measurements Insufficient measurements Critical Critical
Faults-slip- through Faults-slip-through among different stages Critical Critical
Defect Classification Vague classification of defects Important Critical

Involvement V&V experts V&V experts are involved to the later stages only Critical Important
Initial framework Inappropriate time for initial framework General

9

Fig. 3: Challenge-cause analysis for RUAG

Fig. 2: Challenge-cause analysis for SSC

10

VAs, the improvement potential they can have and a
method by which they can have a combination of VAs to
ensure that defects are covered. Lars-Ola et al. [18]
proposed a method at Ericsson for faults-slip-through
measurements which has three steps, in the first step a
strategy is developed about what should be tested at
which phase. This will have a direct mapping about what
type of faults a certain phase should cover. In the second
step, average cost of finding defects in various stages is
determined; this can be obtained through the reporting
system or by expert judgments. In the third step, an
improvement potential is determined by calculating the
difference between the costs of finding defects at the
stage they were found to the cost of finding defects from
the stage where they slipped through. The approach
describes definitions and instructions about how to apply
and follow up on measurements. But the pre-requisite for
applying this method is a strategy and classification of
defects and measurements about the cost of finding
defects at various stages.

C. Strategy for selection of Cost-effective VAs

Current Reality Tree (CRT) also shows that both
companies are facing problems due to inappropriate
selection of VAs at different stages of software
development life cycle. For example, at SSC, the
developer himself performs unit testing of code which can
cause faults to slip through to the next stage. On the other
hand at RUAG, code inspection is performed by an
independent person at unit level to ensure full structural
coverage, but they are lacking in integration testing. Both
companies are facing problems in identifying the
appropriate VAs at different stages and there is a need for
a strategy to select appropriate VAs.
There are some strategies focusing on the selection of
combination of VAs. Baret el al. [12] used the idea of
mapping matrix for optimizing the testing process. The
matrix is filled by placing VAs and defect types in rows
and columns, respectively. If any VA has the ability to
detect a specific defect type, then the cell representing
that VA (row) and defect type (column) is marked with
“X”. Wagner’s model of quality economics presents cost
versus benefit analysis by using more detailed metrics and
equations [13, 14]. This model requires a lot of data
initially and cannot be a candidate strategy for the
selection of cost-effective VAs because of lack in data at
both companies. Murnane et al in [15], presented a
method for the selection of test cases by tailoring black
box testing. The limitation of this method is its only focus
on one aspect of V&V process. Combination framework
by Bradbury et al [16], focuses on mutation for defects
and automated VAs and does not provide any guideline
for the selection of VAs.

A significant number of interviewees also mentioned
that defect detection completeness is one of the main
requirement for the space industry and optimal VAs are
required to achieve quality in a limited budget.

Strooper’s et al Model [17]

The strategy presented by Strooper’s et al [17], for the
selection of cost-effective VAs is a candidate solution. It
aims at selecting and evaluating different combinations of
VAs by focusing on maximizing completeness and
minimizing effort thus reducing cost and enhancing
efficiency, in four steps. Systematic way of applying
empirical information makes this strategy a competitive
approach. The strategy analyzes different combination of
VAs by exploring effort and defect detection
effectiveness of the VAs, iteratively. Each iteration
determines whether the particular combination produces
expected results or adjustments should be made. This
model has four steps;

• Step 1: Pre-selection: Collect cost-effect

information
• Step 2: Argument 1, Maximize completeness
• Step 3: Argument 2, Minimize effort
• Step 4: Post-Selection, Updating Cost-effective

information
Following are some reasons for the selection of this

strategy

Maximizes completeness and minimizes effort

Step 2 of this model requires the combinational
selection of VAs to ensure that all the defects are covered
by VAs. Step 3 ensures to minimize effort by selecting
the combination of VAs which requires minimum effort
from the combinations selected in step 2.

Supports decision by empirical information

Both SSC and RUAG don’t have enough initial data in
terms of defect logging and efficiency of VAs. This
model is flexible enough as it can be initiated by educated
guesses of V&V experts but they will have empirical data
right after the first iteration. This data can also be used to
determine whether the selection produced expected results
or not.

Scalability

The model is flexible to be used at any stage of V&V
process i.e. unit, integration or system level.

VIII. VALIDITY THREATS

To increase the validity of results we have used
triangulation, i.e. a variety of research methods.
The results are based upon the combination of
questionnaire, document analysis and semi structured
interviews. There were two researchers involved in it who
worked independently and discussed the results.
External Validity is a valid threat for this research
because the case companies are based in Sweden and
have relatively small software divisions. They may have
different perception about ECSS and have different issues
in their V&V activities, from other companies. A small

11

survey at other companies can improve the external
validity of this research. At SSC, the survey questionnaire
was sent to broad set of persons this might be one of the
reasons they showed less knowledge of ECSS standards.
Moreover, all the interviews were recorded and chances
are that interviewees may be intimidated by that. In order
to reduce the affects of it, before starting every interview
their permission was taken and they were assured that
recorded files will only be available to the researchers and
only the results and conclusion will be available to other
persons.

IX. CONCLUSIONS

This paper describes the results of two industrial case
studies of companies in the European space industry.
Based on a triangulated research method using three
sources of data it presented the issues and challenges that
were identified. It described the possible ways that the
main stakeholders, the developing organizations, the
customers and the ECSS standards organization, can work
together to address these challenges. It also discussed the
possible ways forward to reach the goal of creating more
cost-effective verification and validation activities
framework for the space industry.

ACKNOWLEDGMENTS

This work has been supported by the Swedish National
Space Board.

REFERENCES
[1] C. Mazza, “Standards: the foundation for Space IT,” in Workshop

on Space Information Technology in the 21st Century. Darmstadt,
Germany: European Space Operations, September 2000.

[2] European Cooperation for Space Standardization, “ECSS-S-ST-
00C - Description, implementation and general requirements.”
ESAESTEC, Requirements & Standards Division, July 2008.

[3] L. Balestra, “European Cooperation for Space Standardization
(ECSS),” in Trilateral Safety & Mission Assurance Conference
(TRISMAC 2008), April 14–16 2008

[4] M. Jones, U.K. Mortensen, and J. Fairclough, “The ESA Software
Engineering Standards: Past, Present and Future,” in Proceedings

of the 3rd International Software Engineering Standards

Symposium (ISESS ’97). Washington, DC, USA: IEEE Computer
Society, 1997, p.119.

[5] G. Bratt, E. Denney, D. Giannakopoulou, J. Frank and A. Jonsson,
“Verification of Autonomous Systems for Space Applications”, in
Proceedings of IEEE Aerospace Conference (NASA Ames Res.

Centre, Moffett Field,CA, USA, 04 - 11 March 2007), IEEE
Computer Society, Washington, DC. USA.

[6] A. Cockburn, Agile Software Development. Addison-Wesley
Professional, 2002.

[7] D. Astels, Test Driven development: A Practical Guide. Prentice
Hall Professional Technical Reference, 2003.

[8] K. Schwaber, Agile Software Development with Scrum. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[9] B. Raza, E. Ahmad, R. Feldt, and T. Nordebäck, “ECSS Standard
Compliant Agile Development for Dependable Space Software –
an Industrial Case Study,” 2008, in submission.

[10] J. L. Lions, “Ariane 5 Flight 501 Failure – Report by the Inquiry
Board,” Tech. Rep., 1996.

[11] M. Rodriguez, J. G. Silva, P. Rodriguez-Dapena, H. V. Loon, and
F. A. Montero, Reuse of Existing Software in Space Projects
Proposed Approach and Extensions to Product Assurance and
Software Engineering Standards, 2005, pp. 258–267

TABLE VIII
RECOMMENDED SOLUTIONS FOR DIFFERENT STAKEHOLDERS AND CHALLENGES

Challenge Id Developing Organization Customer ECSS

Reusability Clarify reuse of artefacts and VAs,
Evaluate cost effectiveness

Resource-
intensive

Document inefficiency & overlap between activities

Interpretation Designate ECSS authority for
each project

Increments
Describe alternative processes that works & point out
ECSS mismatches

Allow process experimentation
Allow alternative Processes, Consider
simpler/quicker evolution process

Galileo
standard

Clarify relationship between
ECSS & other common standards
& motivate differences

Knowledge
Ensure broad ECSS knowledge even when non-ECSS
projects are run in parallel

Ensure coherent ECSS
knowledge among reviewers and
among projects

Develop lightweight ECSS teaching
materials

Innovation Try alternatives in non-ECSS projects first & consider
ECSS when evaluating them

Ensure the standard is primarily
goal-driven & only secondary
method prescriptive, Clarify explicitly
for big trends like model driven how
they can be incorporated

Inflexibility
Extend to agile and alternative
processes

Requirements
Show alternative ways to document requirements for
compliance

Evaluate alternatives for
documentation

Tailoring
Describe requirements on
tailoring documentation

Clarify how to tailor and document
tailoring

12

[12] N. Barret, S. Martin, and C. Dislis, "Test Process Optimization:
Closing the Gap in the Defect Spectrum," in Proceedings of the

International test conference, 1999, pp. 124-129
[13] S. Wagner, "Modelling the Quality Economics of Defect-

Detection Techniques," in Proceedings of the International

Conference on Software Engineering, 2006, pp. 69-74
[14] S. Wagner, "Software Quality Economics for Combining Defect-

Detection Techniques," in Proceedings of the Net.Object Days

2005 Workshop on Software Quality (WOSQ'06), 2006, pp. 69-74.
[15] T. Murnane, K. Reed, and R. Hall, "Tailoring of Black-Box

Testing Methods," in Proceedings of the 2006 Australian Software

Engineering Conference (ASWEC'06), 2006, pp. 292-299.
[16] J. S. Bradbury, J. R. Cordy, and J. Dingel, "An Empirical

Framework for Comparing Effectiveness of Testing and Property-
Based Formal Analysis," in Proceedings of the 6th ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, 2005, pp. 2-5
[17] M. A. Wojcicki and P. Strooper, “An Iterative Empirical Strategy

for the Systematic Selection of a Combination of Verification and
Validation Technologies”, in Proceedings of 29th International

Conference on Software Engineering (Minneapols, MN, USA, 20 -

26 May 2007), ICSE 2007, IEEE Computer Society, Washington,
DC. USA.

[18] L.O. Damm, L. Lundberg, and C. Wohlin, “Faults-slip-through - a
concept for measuring the efficiency of the test process,” Software
Process: Improvement and Practice, vol. 11, no. 1, pp. 47–59,
2006.

[19] S. R. Rakitin, (2001) Software Verification and Validation for
Practitioners and Managers (Second Edition), Artech House ,
London, UK.

[20] G. J. Myers. “A controlled experiment in program, testing and
code walkthroughs inspections”. Communications of the ACM,
vol. 21/9, September 1978, ACM, New York, NY, USA.

[21] R. W. Selby. “Combining software testing strategies: An empirical
evaluation”, in Proceedings of the Workshop on Software Testing

(Banff, Canada, July 1986), IEEE Computer Society, Washington,
DC. USA.

[22] M. Wood, M. Roper, A. Brooks and J. Miller. “Comparing and
combining software defect detection techniques: a replicated
empirical study”, in Proceedings of 6th European conference held

jointly with the 5th ACM SIGSOFT international symposium on

Foundations of software engineering (Zurich, Switzerland 22-25

September 1997), ESEC ’97/FSE-5, Springer-Verlag, New York,
USA.

A-1

Appendix A

Approach used in design of the study, is discussed in this appendix. It explains the

techniques used for data collection and motivation behind the selection these techniques

A-2

A.1 Design of Study

This study is part of a project at RUAG Aerospace Sweden AB (RUAG) and Swedish
Space Corporation (SSC) to create more efficient verification activities (VAs) in general, and
within ECSS projects in particular. The research was conducted using mixed methodology
for inquiring problems and verifying results. Different strategies (document analysis, semi-
structured interviews and web-based questionnaire) used in this research complemented each
other and each technique provided input and feedback for the next strategy to further explore
the area of study. To answer the research questions the study was organized in three steps;
Preliminary Investigation, Analysis and Solution Identification and Solutions Evaluation.
Figure A-1 further explains the research flow of the study organization of the study in
relation with artefacts of each phase. Triangulation i.e. a variety of research methods also
increase the validity of the results we have used triangulation, i.e. a variety of research
methods.

Figure A-1: Organization of Research

A-3

A.2 Web-based Questionnaire

A Web-based questionnaire was conducted for both the companies. The questionnaire
contained both general and technical questions. The general questions were targeted for at
personal information whereas the technical questions were focused on their experience in
software development, V&V process, and knowledge about ECSS standards. For better
understanding the technical questions were organized into following four themes:

• Theme 1: ECSS Standards

• Theme 2: Effectiveness of VAs

• Theme 3: Effort required for VAs

• Theme 4: Change in VAs, if ECSS is not relevant

Following Table [IX], contains the questions asked in web-based questionnaire

Table IX: Organization of web-based questionnaire
Themes Questions

General

What is your name?

What is your age?
Which part of the company / project you are a part of?
Which area of Software development are you involved in?
How many years have you worked within software development?
How many years have you worked software testing / verification and/ or
validation

ECSS Standards

What is your knowledge about ECSS standards?

To what degree ECSS affect how you develop software?
Is the effect of ECSS on the quality of your software?
Is the effect of ECSS on the efficiency of your software development

Effectiveness of VAs

For each of the verification activities that you have been involved in, please
stated how effective in finding defects they are?

How large a percentage of the total development costs do you judge that all
verification/validation/testing activities take?

Effort required for

VAs

For each of the verification activities that you have been involved in, please
stated how much effort they require?

Change in VAs, if

ECSS in not relevant

For each of the following activities if you only consider its effect on software
quality and you are not required to follow the ECSS standards, what would you
change?

Do you have any general comments on Verification Activities (VAs) of your
company? Any comments about the ECSS standards? What would be most
important for your company to improve when it comes to VAs, software quality
and/ or ECSS?

A-4

A.3 Semi-Structured Interviews

According to [11, 12], review of theoretical knowledge and published practices must be
conducted along with industry observations to find out the commonalities of a specific
problem. Therefore, semi-structured interviews were planned for both the case companies.
The questions for the interviews were based upon the results of the already conducted web-
based questionnaire for VAs experts at RUAG and SSC. The interviews helped in getting
insight about the variations, artefacts, and complexities of the state of the practice at both
companies. The interviews were transcribed and individually summarized by both the
authors. By discussing the summaries while merging them a consensus and higher validity
was planned to be achieved. like web-based questionnaire interviews questions were also
divided into different themes:

� Theme 1: VAs in practice

� Theme 2: Effectiveness of VAs

� Theme 3: ECSS Standards

Following Table [X], contains the questions designed for the interviews

Table X: Organization of Interview Questions

Themes Questions

General

What is your name?

What is your age?

Can you briefly describe your previous experience regarding testing,
verification and/or validation?

Which of the projects you have been involved in at SSC / RUAG?

VAs in Practice

Can you briefly describe verification and validation activities at SSC / RUAG?

Have you been involved in VAs in any other company? If yes? How do you
differentiate it from VAs activities at SSC/RUAG?

Do you log all types of defects? Are there any which you don’t log?

How do you design test case and scripts? Which technique do you follow?

Do you document anything about unit testing? If not why?

Which verification method do you use in verification level/stage you are
involved in?

What technique do you use in each verification method that you are involved
in? And Why?

How do you perform Inspection?

A-5

Which type of defects do you find by each technique?

Why do you introduce Test-driven development at SSC?

What are the effects of using Test-driven development on ECSS
standards?

Why do you introduce Integration-driven development at RUAG?

What are the effects of using Integration-driven development on ECSS
standards?

Effectiveness of VAs

Do you calculate the effectiveness of a particular verification
method/technique? If yes how?

Do you think more effort should be placed on metrics to measure the efficiency
and effectiveness of different VAs?

Since you are working with critical systems, how does it affect verification
process?

Do you reuse V&V plans? Especially those which are not in compliance with
ECSS?

Do you think your early involvement in SDLC can be helpful in improving your
performance?

ECSS Standards

What is your knowledge about ECSS standards?

When did you start following ECSS standards?

How does ECSS affect your software development process?
Which parts of the ECSS standards are you following? Why are you following
only them? Why are you not following the other parts?
Which parts of ECSS standards, you think can be avoided? And why?

What are the positive effects of ECSS standards?

What are the negative effects of ECSS standards?

What can be done to reduce negative effects of ECSS standards?

Which ECSS verification level you are working in? (Equipment, Subsystem,
Element, System)

Which ECSS verification stage is relevant to you? (Qualification, Acceptance,
Pre-launch, In-Orbit, Post-launch)

What are you future plans about ECSS at SSC / RUAG?

B-1

Appendix B

This appendix provides information about the European Space Agency (ESA) and
European Corporation for Space of Standardization (ECSS)

B-2

B.1 Introduction

The European Cooperation for Space Standardization (ECSS) is an initiative to develop a
coherent, single set of user-friendly standards for use in all European space activities [13].
In 1993 the European Space Agency (ESA) along with other national space agencies and
industries realized the need of a single coherent, recognized and accepted system of
standards to replace the practice-based PSS-05 standard [21]. The first document of this new
system of standards, named European Cooperation for Space Standardization (ECSS), was
introduced in 1996. The idea is that ECSS standards should be continuously created and
updated to adapt to changing needs of the industry. A revision process started in 2006 and
two batches of updates were released in 2008. Further batches will be published in 2009.

The revised system differentiates between standards, handbooks and technical

memoranda. ECSS standards divide activities into three areas: management, engineering and
product assurance and has four levels:

� Level 0 – discusses policy, architecture and objectives of ECSS

� Level 1 – describes the strategy within management, product assurance and
engineering by highlighting the requirements and interfaces of level 2 elements

� Level 2 – explains objectives and functions of each domain. It is considered as
branch-specific level

� Level 3 – lists methods, procedures and tools to achieve the requirement of the
level 2 documents. It is also known as technical domain specific level.

The intention of ECSS presented in [21], can be summarized as:

� Requirements on project level instead of organizational level, as an organization
can have multiple projects simultaneously

� Flexible to be used with other quality standards

� Can be applied as a whole or partially if the connection with other standards is
possible

� Provides tailoring options

B.2 ECSS-E-40 (IB, 2B)

ECSS-E-40 (Part 1B and 2B) and ECSS-Q-80B are related to software. ECSS-E-40 is

based on ISO 12207 and allows suppliers to define their own standards, which are in
compliance with or tailored to it [18, 20].

� The requirements of ECSS-E-40, at a very high level, can be summarized as

follows:

� Customer itself is responsible for system requirement engineering and review

B-3

� Supplier is responsible for software requirement analysis, architectural design

and Preliminary Design Review (PDR)

� Supplier is responsible for software design, coding, unit testing, integration
testing and Critical Design Review (CDR)

� Verification and validation of PDR, technical aspects of CDR is conducted by
supplier in its own environment

� Software delivery and Site Acceptance Test (SAT) is carried out by supplier in
the operational environment supplied by the customer

� Supplier is responsible for selecting software development process and required
resources

This standard is based on a recursive concept of customer supplier relationship. A

customer at one level can be a supplier for a higher level. According to clause 4 of ECSS-E-
40 Part 1B [17], customer is responsible for defining both functional and performance
requirements, interface between software components and interface between software and
hardware while the supplier is supposed to maintain the interface with the customer to ensure
the proper consideration of higher level system requirements.

B.3 ECSS-Q-80B

ECSS-Q-80B defines requirements for product quality assurance to ensure that the
software development produces safe and reliable software [18, 19]. The requirements of this
standard can be summarized as:

� Supplier has to develop and maintain a comprehensive product assurance plan

with focus on continuous process assessment and improvement

� Selection of software development process according to ECSS-E-40 Part 1B,
must be assured by fulfilling the requirements of each phase

� Requirements to assure the quality of final software product by indentifying
quality attributes, measureable quality objectives and set of metrics to verify
quality objectives

C-1

Appendix C

This appendix provides information about Swedish Space Corporation. It provides the
summaries of interview, survey and document analysis conducted for data collection at

Swedish Space Corporation.

C-2

C.1 Introduction

SSC was established in 1972 by the Swedish Government which is completely owned by
the Swedish state and administered by the Ministry of Enterprise, Energy and
Communications. In 1978, the Swedish Space Corporation launched its satellite operations,
and currently they have expanded considerably. They have various satellite stations and
more than a dozen parabolic antennae for communicating with orbiting satellites [13].

The group has 560 employees and it has five different facilities in Sweden

� Solna (head office and engineering center)

� Esrange Space Center, Kiruna (launch and test services and satellite
communication)

� Vidsel (test services for aerospace systems)

� Ågesta (teleport services)

� Salmijärvi (satellite operations for ESA) (SSC website)

The company also has an office in Beijing, China. It is also the full-owner of four
subsidiaries with facilities in Uppsala Sweden, Germany, France and Chile.

Currently, SSC is working on the following projects related to satellite systems which are at
different stages: PRISMA, SMALLGEO, ODIN, PROBA-3, and SMART-OLEV. SSC has
also been involved in various projects and activities related to MARITIME
SURVEILLANCE, BALLOONS, ROCKETS and SATELLITE SERVICES [13]. Their
future projects include personal sub orbital flights. Spaceport Sweden and Virgin Galactic
plan to offer trips into near space from Kiruna Airport as early as 2012. The space travellers
will, amongst other things, experience 4-5 minutes of weightlessness while enjoying the
astonishing view of Earth [13].

The Space Division at the Swedish Space Corporation (SSC) develops software and
hardware for space applications, such as for example the satellites PRISMA, Small-GEO and
SMART OLEV. They are a system integrator and supplier for small and micro-satellites.
They are also specialized in developing attitude orbit and control systems, on board data
handling units etc. In recent years they have changed their software processes to be more
agile, by using Scrum as a project management model and Test-driven development as an
engineering model. The case study was conducted at the space division of SSC.

C.2 Data Collection

C.2.1 Document Analysis Results

Since OBSW and AOCS/GNC are developed by different teams and different V&V plans
are developed by AOCS or OBSW teams. For ESA projects, V&V plans are then authorized
by the primary contractors and are distributed to ESA as well. Change history is maintained
for each V&V plan in terms of versions.

C-3

C.2.1.1 OBSW Verification and Validation Plan (PRISMA,

SMART-OLEV)

OBSW is responsible for controlling the spacecraft throughout the mission. The software
executes on SSC developed Leon-based Core board. The OBSW provides functionality for
GNC, telecommand & telemetry, thermal & power control, payload control, autonomy, and
redundancy & fault management. Different components are developed by different teams.
For PRISMA the responsibility split can be summarized as under:

� GNC Team − responsible for GNC, ACS, and ORB cores.

� CNED − develops part of GNC core. GNC is responsible for integration and test
of those parts into the GNC core.

� DLR − develops part of GNC core and GIF component contained in XU. GNC
team is responsible of the parts in GNC core and OBSW team for the part in XU
component.

� OBSW Team − responsible for all development and test of all parts of OBSW,
except those mentioned above. And for integration and building of complete
OBSW.

For SMART-OLEV only two teams are defined:

� GNC Team – Responsible for GNC Core.

� OBS Team – Responsible for all development and test of all parts of OBS,
except GNC Core, and for integration and building of complete On-Board
software.

C.2.1.1.1 OBSW Test Process and Methods

The incremental approach is used for the development and testing. All the requirements

in project (except GNC unit requirements) are stored in Telelogic DOORS.

Requirements are written on three levels:

� System Level − behavior and requirement for the whole system.

� Subsystem Level – requirements for satellite subsystems.

� Unit Level – implementation requirements for different components that are
derived from the subsystem level.

The division into subsystem is functional, which means that different parts are
implemented in software. Only requirements on subsystem and unit levels are covered by
test activities described in this document. System level requirements are verified by AIV,
AIT and BTM. Test activities are based upon requirements and mission representatives to
obtain coverage of implicit requirements and validate functionality from a real-world
perspective. Verification is done on both unit and subsystem level in all development teams.
This is important, for example since test activities on subsystem level assumes that unit level
requirements are fulfilled and likewise for system tests. Validation is only needed on

C-4

subsystem and system level. Testing activities has carried in the following sequence in each
increment:

1. New functionality and unit test is done.

2. Following three steps are repeated until sufficient quality has been delivered or
deadline for release is reached

a. OBSW team builds the complete software based upon version information
from development teams

b. System and integration tests are performed

c. Defect corrections and unit test are done

3. Release documents are updated and software is released

C.2.1.1.2 Test Management Tools

• Telelogic DOORS

The DOORS requirement management system can also be used for test case specification
and simple test case result documentation. The major pros for this approach are connection
between requirement and test cases are easily specified and that the system is already in use
and there is no use for installation or learning.

But if it is used more extensively the list of cons becomes further longer. For example

there is no support for requirement coverage analysis, nice structuring of test cases and
execution is almost impossible, all attributes for test cases/executions/ results must be
created manually and this is not built in defect management system. This is due to the fact
that DOORS in not really intended for test management.

• Mercury Quality Centre

Mercury Quality Centre (MQC) is a test management system with support for the
following tasks:

� Requirement management

� Writing test case specifications

� Planning test case execution

� Reporting and analyzing test result and progress

� Managing defects

The requirements are managed in DOORS. But since it is necessary to connect
requirements to test cases/test and analyze requirement coverage etc the requirements are
copied from DOORS to MQC.

C.2.1.1.3 Test Environment

C-5

• MATLAB/Simulink

Most of the ASW software is developed in Simulink with the addition of Real-time
Workshop. This is graphical environment that supplies possibility for simulations, interface
to software written in other languages and generation of C code. Due to the possibility of
simulations the system is also heavily used for test and prototyping. Input and output can be
supplied / obtained either via the graphical interface or via special implementations of the
interface to software components outside Simulink. The prior is typically used to test ASW
cores (implementation is contained in Simulink) and the latter for test of other ASW
components (have interface to BSW which is implemented in C).

• PRISMA SATLAB

SATLAB is a real-time test environment developed by SSC that contains the following
parts:

� Onboard Core Boards – this can be seen as the test object. A core board can be
configured to be either Main or Target

� Satellite Simulator (SATSIM) – A real-time simulator running models of the
sensors, actuators and space environment for Target and Main

� RAMSES – part of the electric ground support system that is developed in
parallel to OBSW and shall be used for PRISMA operations. Contains a PLUTO
interpreter that shall be used for test automation

� Networks and Adapters – used to connect different parts of the system and
substitute the RF link between and spacecraft

The usage of TM/TC unit on Target core board is workaround for better testability. This
TM/TC unit is not used in flight. Instead it is replaced by the Inter Satellite Link (ISL) and
all telemetry/telecommands is transmitted / received through the main satellites TM/TC unit.
Three different SATLAB configurations are specified here as under:

� PRISMA SATLAB configuration 1

Only core board is connected and is alternated between Main or Target configuration.

Whether the core board shall be in nominal or redundant mode not specified and switching
between them is encouraged to increase target environment configuration coverage. This is
test environment can be used for many OBSW system test cases and due to lack of core it is
believed to be used for a majority of them.

 Figure 5. SATLAB configuration 1 [22]

C-6

� PRISMA SATLAB Configuration 2

Two core boards are connected. One configured as Main and the other as Target. They

are connected via SATSIM, which simulates the ISL communication. Nominal/redundant
settings are unspecified. This environment shall be used when verification of cooperation
between Main and Target is included in the test case. It can also be used to obtain a better
similarity with real world situation ain many other test cases, for example transmitting
telemetry and telecommands over ISL instead of TM/TC unit on Target.

�
�

� PRISMA SATLAB Configuration 3

Two core boards are connected. Both are alternated between Main and Target
configuration. If one core board is used as nominal then the other one is used as redundant.
They are connected via Spacewire link, which is equal to the satellite installation. The
environment must be used for the best cases that verifies nominal/redundant core boards
redundancy, for example when mass memory is located on redundant core board and OBSW
is running on nominal.

Figure 6. SATLAB configuration 2 [22]

C-7

Figure 7. SATLAB configuration 3 [22]

� SMART-OLEV SATSIM (PIL)

SATSIM is SSC developed PIL and HIL system that has been extensively used in the

PRISMA mission. SATSIM consists of:

� Onboard Core Board – This can be seen as the test object, running the OBSW

� Environment Simulator – A real-time simulator running models of the sensors,
actuators and space environment

� RAMSES – Part of the electric ground support system that is developed by SSC.
Contains a PLUTO interpreter that can be used for test automation

SATSIM will be used for early OBS verification and validation. In parallel the OSTF will
be developed and SATSIM will in system phases act as a Independent Software Validation
(ISV) facility.

� SMART-OLEV OSTF (PIL)

OSTF is a real-time test environment developed by Sener that contains the following
parts:

� Onboard Core Board (Provided by SSC) – This can be seen as the test object

� Satellite Simulator (Made by SENER) – A real-time simulator running models of the
sensors, actuators and space environment

� SCOS2000 – Part of the electric ground support system that shall be used for
SMART-OLEV operations.

� Networks and Adapters – Used to connect different parts of the system and
substitute the RF link between ground and spacecraft

C-8

� SMART-OLEV OSTF HIL

HIL incorporates several hardware units, sensors and Rendezvous and Docking Payload.

� Tools

CANalyzer can be used to monitor and generate CAN traffic. It runs on a standard PC and
can be connected to any CAN bus via a CAN controller. GRMON is used to load, run and
debug OBSW on core board from a PC, as an alternative to program software in EEPROM.
A serial debug port on core board is used to connect the PC.

Summary of software testing performed in each increment is written to provide an
overview of software status/quality. The document includes OBSW system and integration
tests. Some examples of issues to be included:

� References to tools and documents where detailed test reports can be found

� Summary of each executed test case, including result and problem report
references

� Summary of test cases that have not been executed, including a motivation for
lack of execution

� Verification status of all applicable requirement

� Amount of time spent on verification and validation

This document is written once for each increment. Its purpose is to summarize test
execution and result for one increment so that the reader obtains basic knowledge of
software quality. Tests on previous versions within same increment might also be included
since they unveil new problems and enhancements.

The document is called “Test Report” and stored in DOX. The same document is used

and updated in each increment.

C.2.1.1.4 Regression Tests

The following test cases are executed for each new release/increment:

� Unit test cases for updated sub-products

� Resolved SPRs shall be verified

� Resolved NCR shall be verified

� All automated system and integration test cases.

� “Health checks” for all cores, e.g. Enter GNC Safe Mode

C.2.1.1.5 OBSW Unit Test Plan

OBSW has two main components BSW and ASW. The environment, approach and tools
differ between these components.

C-9

� Basic Software – BSW:

Objective of BSW unit test plan is to the verification of BSW unit requirements. Two
approaches are used for BSW unit testing:

� Manual ad hoc testing – most tests are done ad hoc and only test important

enough to be regression test are formalized into test specifications

� Documented and automated regression tests – the goal is to automate a
regression test suite by using the dedicated test task

For SMART-OLEV following additional test approaches are planned

� Board Support Package (BSP) tests – Tests are performed on flight-
representative LEON hardware, to verify BSP unit requirements.

� BSW Application Layer test – Tests are performed using a stubbed BSP on a
LEON instruction simulator or commercial LEON board, to verify BSW-AL
unit requirements. All tests are automated and code coverage is measured.

� BSW Integration Testing – The BSP and BSP Application layer are tested
together on flight-representative hardware to verify the SW/HW integration.
Tests are automated when possible.

BSW also delivers some third party components that are not explicitly tested by OBSW
team, for example the operating system RTEMS. Mercury Quality Center is used to specify
test cases, document execution and found defects. All tests are performed in an environment
similar to SATLAB. An extra task is added to the regular onboard software in compile time.
The test task can receive commands and send results to/from a debug port on core board
which in turn is connected to a PC which acts as test console.

� Application Software – ASW

Objective of BSW unit test plan is to the verification of ASW unit requirements. Three

approaches are used for BSW unit testing:

� Repeatable tests – all tests must be repeatable, i.e. the sequential steps needed to

rerun the test and to verify the result are documented or scripted. Whenever
possible, tests are automated (both execution and verification).

� Block box testing – whenever possible, black box testing shall be done. That is,
no modifications of the test object shall be necessary to perform the tests. A test
harness shall be built that will feed the test object with stimuli and that will read
outputs needed for verification.

� Maximum execution time – to ensure that a component can meet its time
deadline and not consume too much of CPU resources, max-path tests in a
LEON3 simulator are needed. For such tests, a test harness is built around
the component that will execute maximum path taken by the component (i.e. the
maximum execution time). The test harness is compiled and downloaded to a
LEON3 instruction simulator and the resulting number of instruction cycles is
returned.

C-10

Test cases and results are specified in a dedicated DOORS module and remaining defects
shall be entered in Mercury Quality Center. Tests are primarily run in MATLAB/Simulink
on a developer desktop. If this is not possible they are run in SATLAB environment. For
SMART-OLEV Simulink Verification and Validation Toolbox is used for model coverage
measurements while TSIM-LEON3 is used for testing of ASW hand-written code.

Testing of OBS components shall be done through a test harness that will provide the
component with stimuli and read output.

The Stimuli are Telecommand packets, CAN data messages, Data Store inputs and
additional BSW queue inputs (Spacewire buffers etc), if needed. The output can be
Telemetry packets, CAN command messages, Data Store outputs and additional BSW queue
output, if needed. The actual test procedure is executed through a MATLAB M-Script. This
script prepares workspace variables needed by the test harness to feed the component with
stimuli. When the simulation has finished, the script will read the generated output variables
and automatically verify the data determine the test case is passed or failed. There is a master
test script that calls all component test script.

C.2.1.1.6 OBSW System Test Plan

Objective for OBSW system is to verify correctness of the software developed by OBSW

team. This can be by verification of all testable subsystem requirements and validation of the
OBSW system via mission representatives, duration and high load (stress) scenarios.

OBSW system test activities are as under:

� Execution in target environment − tests shall be execution in an environment as

similar to target as possible in respect in respect to processor board, EGSE and
CAN bus data. For example EM core board and RAMSES system shall be used.
The official SDB will also be used as much as possible.

� Black box testing – only black box tests shall be done. That is, no modifications
or insight into the test object shall be necessary to perform the tests.

� Automated and manual execution – as many test cases as possible shall be both
automatically and manually executable. There are always some test cases that
are very rarely executed or for which the results cannot be clearly defined and
should therefore not be automated. And some that requires a huge amount of
events and verifications and cannot be manually executable. But in every where
both alternatives are possible they shall be supported.

� Main and Target are tested separately − most functional OBS requirements are
independent of main-target interactions and the two are therefore tested
separately. Note though that some tests requires both satellites to be included
which will then be done.

Mercury Quality Center is used to specify test cases, document execution and found
defects. All tests will be performed in any of the SATLAB test environments specified. For
implementation and execution of automated test cases the PLUTO interpreter included in
RAMSES system is used.

C-11

Test case design may vary slightly depending on from perspective they are written, but all
the test cases contains Procedure / sequence of events, Expected results / acceptance criteria,
Short description of the purpose and preconditions for the test case, and Specification and
motivation of whether the test case shall be atomized or not.

Test cases are specified upon the following perspectives:

� Based on Requirements – each test case aims to verify one, or couple of, level 2

requirement (s). Test procedures are defined in terms of what shall be done and
observed.

� Based on Mission Representatives – test cases aim to verify that a flow event
that may occur in real-world situation. Test case specifications are less detailed
to allow for tester to execute it a way that he/she feels natural. Of course all
scenarios that may occur cannot be tested in this way and those selected shall be
motivated by importance or frequency of occurrence. A lot of test cases will be
taken from System Functional and Performance Test (SFPT), which can be seen
as a validation test for the software. Execution of these test cases is important
since it will likely avoid delays in validation test campaign. Execution of the
validation tests in system test environment is also standard procedure in software
testing.

� Stress Tests – these test cases are similar to those based on mission
representatives in that they try to catch a real-world scenario. On the other hand
they do not have to be important or frequent; their only aim is to find
circumstances when the software crashes or fails to meet its goal. Error cases
that does not occur in nominal conditions, for example overload on CAN bus is
also be included.

� Duration Tests – shall verify that the software functions remain constant
overtime. A number of different scenarios are continued and verified over a long
duration of time, typically a few days.

� Core Integration Tests – purpose of those tests are to verify that core ICD’s are
correctly implemented and that the specified input/output values are fetched
from source (e.g. CAN bus, TM, other cores) correctly. This is a dynamic test
that is carried out through by setting input/output and verification of
telemetry/CAN bus.

C.2.1.1.7 Risks and Contingency approaches

Some contingency approaches are defined for OBSW system testing activities have been

identified. Quality problems or delays in the RAMSES project. In particular the tool for
execution of automated testes, Cheops, is very critical. A way to minimize impact of Cheops
problems is to make all system test cases manually executable as well as automated. Quality
problems or delays in SATLAB development. If SATLAB cannot be used when needed
CANalyzer is an alternative way of generating CAN traffic. Tests of compliance with level 2
requirements in DOORS and ICD’s shall be done and documented. System performance
shall be measured and wide range of extensive real world scenarios shall have been executed
in real-time. A small number of defects are accepted, if they are well investigated, not serve

C-12

and well documented. The deliverables of these testing activities are test case specifications,
scripts for automated execution of test cases, defect reports for found software problems,
execution reports for test case execution and a summary of software status. Logging of data
during test executions is made on two buses via the following tools included in the test
environment. Onboard CAN Traffic is logged via CANalyzer. RAMSES is used to log all
traffic that is accessible in ground system, i.e. telemetry, telecommands, events and internal
RAMSES data such as sync and acknowledged. Two applications are supplied by RAMSES
for this purpose. Anubis logs all telemetry and Toth is used for other RAMSES traffic.

C.2.1.1.8 OBSW Integration Test Plan

As different parts of the software are developed by different teams some test campaigns

dedicated to integration of the software is needed. Such test campaigns are described in this
section. Primary objectives are to verify that those parts of that the software developed by
OBSW team integrates correctly with its surrounding, e.g. ground segment and external
units. Secondary objectives are to verify that those parts of the onboard software that are
developed by other teams can be executed without crashes or other deterioration of the
software environment (this is done since OBSW team is ultimately responsible for the
onboard software). And to verify the Main-Target ISL link, which cannot be fully tested in
system test since it tests the software separately.

There is no need for a dedicated RAMSES test campaign since it is used through system

tests. Mercury Quality Center is used to specify test cases, document execution and found
defects. SATLAB is used for as a testing environment. Since some tests include hardware
that is not accessible in SATLAB it will probably be necessary to use AIV environment. Test
object is a formal build of the complete onboard software for both Main and Target.
GNC/ACS cores and DLR’s GIF module are included build, but verification of them is
excluded. Some important integration test campaigns are as under:

� Embedded Software Conformance Test − Objectives of this test activity are to

verify that all embedded software modules that are developed by other parties
are “Well behaved”. Examples of things that are verified is that they don’t use
too much CPU time or generate software reboots. Test is done for GNC (Main),
ORB (Main), DLR GIF (Main), and ACS (Target).

� Ground Segment Software Integration Test − These tests shall verify
compatibility with specific ground segments tools that are not part of the
standard ground segment equipment, i.e. RAMSES. The reason why there is no
RAMSES integration is that such compatibility is tested in all other test
campaigns. This test campaign is done for patching tool testing.

� Core Consistency Check − Purpose of this check is to verify that the
inputs/outputs of course are consistent with respect to data types, number of
elements in vectors etc. This is a static test and is carried out through inspection
of ICD’s.

� Payload Hardware Integration Test − These tests intend to verify data flow to
and from different onboard instruments. That data flows are compatible with
ICDs for the instruments are verified in different system tests, but this one
focuses on compatibility with actual hardware instrument and specific ground
tools, when applicable. This test campaign is used for Star Tracker, Visual Based
Sensor, GPS and FFRF.

C-13

C.2.1.2 SMALL-GEO AOCS Verification and Validation Plan

In order to meet SGEO AOCS project needs, improve the efficiency of software
integration and provide the early evidence that SGEO AOCS Software will be acceptable;
the incremental and iterative software development process based on well-proven ECSS and
Scrum standards has been chosen.

C.2.1.2.1 OBSW Test Process, Methods and Roles

� SGEO AOCS SW Product Owner

The SGEO AOCS SW Product Owner has the following responsibilities:

� Represent all stakeholders’ and present their requirements on verification and

validation

� Define verification and validation objectives and strategies

� Decide test completeness criteria for Sprints’ deliverables

� Define Sprints’ goals (inclusive testing goals and test coverage)

� Accept or reject the Team’s verification and validation results (Sprint deliveries)

� Support the Team and Scrum Master in the day-to-day testing activities

� Control status of NCRs/ RFDs/ RFWs/ RIDs/ SPRs/ SCRs/Actions

� SGEO AOCS SW Scrum Master

The SGEO AOCS SW Scrum Master (SM) has the following responsibilities:

� Employ cross-functional team, including verification and validation experience

and competence

� Inform and train project members in software verification and validation matters.

� See to that the Team understands and works towards verification and validation
objectives

� Support the Team in the day to day testing work

� Describe terms, standards, procedures for verification and validation

� Implement measure and report software testing coverage (metrics) to SGEO
AOCS PO

� Suggest and perform actions to effectuate verification and validation activities

� Ensure that the test documentation contains the appropriate level of information
for maintenance activities

� Justify the use of software testing tools

C-14

� Keep track and report to Product Owner status of NCRs, RFDs, RFWs, SPRs,
SCRs, RIDs, Actions

� Produce status accounting reports for Software Problem Reports/Software
Change Requests (SPR/SCR)

� SGEO AOCS SW Team

The SGEO AOCS SW Team has the following responsibilities:

� Define methods, rules, templates and tools for software verification and

validation.

� Design and develop the test suits (test scenarios, procedures, scripts, harness).
To enhance quality, unit tests will in general be performed independently of the
development.

� Perform verification and validation in accordance with a strategy for each testing
level (unit, integration, validation, and acceptance)

� Participate to Daily Scrum (Stand-Up meetings) and display verification and
validation progress and status on daily basis

� Demonstrate testing results at Sprint demo

� Report impediments, NCRs, RFDs, RFWs, SPRs, SCRs, RIDs

� Apply defined standards and procedures in all verification and validation stages.
Not reducing products’ internal quality and creating technical debt.

� Produce test documentation that contains the appropriate level of information for
regression testing and maintenance activities.

� Suggest and perform actions to effectuate testing work

� Test Approach

Three types of test are performed:

� SGEO AOC Core Software Static Checks − SGEO AOC Core design guidelines
are implemented in the Simulink Verification and Validation modeling standards
checker, which can find unwanted model properties, such as incorrect or
deprecated blocks and block parameters, incorrect fonts, and misplaced objects.
Analysis reports can be generated from the tool.

� SGEO AOC Core Software Unit Test −Unit test has as its only goal to verify
unit requirements and to obtain test coverage of the model in a Simulink
environment.

C-15

� SGEO AOC Core Software Integration Test −Integration test aims to guarantee
that the software that is excluded in system test still can be integrated correctly
into SGEO OBSW without CPU overload or crashes.

Figure 8: SGEO AOC Core Development and Test logic [22]

C.2.1.2.2 Test Management Tools

� Telelogic DOORS

DOORS is used for requirement like OBSW.

� Simulink Verification and Validation Toolbox

The model based design paradigm encourages the developers to closely link requirements

to models. The Simulink V&V toolbox provides a handy requirements management interface
(RMI) that allows designer to associate requirements with Simulink models, subsystems and
blocks, as well as with State flow charts, states, transitions, boxes and functions.

Requirements stored in Telelogic DOORS can be linked to Simulink and State flow

models using this RMI.

� Hansoft project manager

C-16

Hansoft project manager QA part is planned to be used for managing defects. The bug

workflow in Hansoft will be customized to fulfill project needs.

C.2.1.2.3 Test Environments

� MATLAB / Simulink

AOCS Core software is developed in Simulink. Simulink is a tool for modeling,

simulating and analyzing multi-domain dynamic systems. Its primary interface is a graphical
block diagramming tool and a customizable set of block libraries. It offers tight integration
with the rest of the MATLAB environment and can both drive MATLAB or be scripted from
it. Coupled with Real-Time Workshop, another product from The MathWorks. Simulink can
automatically generate C code for real-time implementation of systems or digital controllers.

Simulink Validation and Verification toolbox as well as internally developed test tools

are used to run open-loop tests, i.e. input-output vectors tests in Matlab/Simulink. These tests
can be executed both on unit level and Core level. Simulink Validation and Verification
toolbox will also be used to provide model coverage tests.

� Target Simulator (TSIM)

GAPSLER Research’s TSIM is an instruction-level simulator capable of emulating

ERC32- and LEON-based computer systems. The tests designed and executed in the
Matlab/Simulink environment is rerun on TSIM and the outputs from either test can be
compared. TSIM can be connected to a GNU gdb debugger.

C.2.1.2.4 Regression Tests

The following test cases are executed for each new release/increment:

� Unit test cases for updated models.

� All automated integration test cases.

C.2.1.2.5 SOFTWARE UNIT TEST PLAN

Unit test has as its only goal to verify unit requirements and to obtain test coverage of the

model in a target emulator environment, i.e. TSIM. The units are implemented as model
reference blocks in Simulink, thereby ensuring that the code generated from a unit will be
the same as the code generated later for the entire flight code.

The unit tests are used to verify the 3rd level requirements applicable to the AOCS

software.

C.2.1.2.6 Test Objects

Test items are the code generated from AOC Core sub models, i.e. functional units
implemented as referenced models. Examples of such functional units are mode handler;
GYRO-, RWA-, SADM-, SPS-, ST-signal conditioning functions; safe pointing control
functions; celestial attitude and angular momentum estimation functions; momentum
management functions; guidance functions etc.

C-17

C.2.1.2.7 Test Objectives

� Verification of all testable AOC Core requirements (3rd level requirements

applicable to the AOC Core software) for each referenced model.

� 100% model coverage of referenced model, deviations from this goal are to be
motivated

C.2.1.2.8 Test Approach

The tests are constructed as a Simulink “test harness” model first that may take source

data from a file as input. The test is then run on the TSIM target emulator. It shall be possible
to execute the tests automatically. Each test shall consist of an expected result output
sequence to which the test result shall be autonomously compared for a pass/fail check of the
result. The test shall be “model free” in the sense that the test shall not require any closed
loop simulation of on-board functions in combination with simulation models.

All the unit tests are executed as an autonomous “batch” job before any release of the

AOCS software.

� For every Sprint

� Create test cases in Simulink to verify all testable requirements implemented in

this Sprint.

� Run test cases on unit model.

� Compile test report.

� Review design within the team to ensure that the Coding Style Guidelines is
followed.

� In the eve of major AOCS software delivery:

� Create test cases in Simulink to ensure maximum module coverage,

� Run test cases using Simulink Verification & Validation toolbox

� Justify/explain deviations from 100% model coverage

� In the eve of major AOCS software delivery

� Generate code from the Simulink unit test script for TSIM.

� Generate TSIM test harness.

� Re-run unit test on TSIM.

� Evaluate results against the results in the Simulink test cases.

� Compile test report.

C-18

� As input to SGEO S/W analysis

� Generate max path test cases from for TSIM.

� Generate TSIM test harness.

� Run unit test on TSIM.

� Compile test report.

C.2.1.2.9 Applicable Requirements

The following requirements are verified by AOC Core unit test:

� AOC Core software requirements

� AOC Core internal ICDs

C.2.1.2.10 Test Environment

MATLAB/Simulink on Intel Win-NT systems is used for AOC Core model testing. The

Simulink environment consists of Matlab, Simulink, State flow, RTW, State flow Coder and
Simulink Verification &Validation toolbox. Unit tests will be re-run on TSIM.

C.2.1.2.11 Test Case Design

Testing of SGEO AOC Core components are done through a test harness that will provide

the component with stimuli and read outputs.

Following figure C-5 explains AOCS Unit test design process

C-19

Model

Simulation Test Harness

Simulink

Ver ification&Validation
Toolbox

Input VectorInput Vector

Test

Lo g

Test

Lo g

T est L og

Test Script

Generate Input
Vector

Library

T arget Harness

TSIM

Test

Lo g

Test

Lo g

Tes t Resu l t

T es t

L og

T es t

L og

T es t R esul t

Test

Lo g

Test

Lo g

Test Cover age

Test

Lo g

Test

Lo g

Test Cover age

T es t

L og

T es t

L og

Test Lo g

Figure 9: SGEO AOC Core Unit Test [22]

C.2.1.2.12 Software integration test plan

Objectives for AOC Core Integration Test are:

� Guarantee consistent implementation of AOC Core ICD

� To verify AOC Core functionality in target run-time environment.

� To verify AOC Core performance in target run-time environment.

� Interface with customer

A common simple tool (e.g. XML-based) will be agreed between SSC (supplier) and

OHB (onboard software prime) to enable coherent and simplified exchange of test cases
specification.

� Test Environment

TSIM shall be used for integration readiness tests at SSC.

� Test Object

Test object is the target AOC Core software.

C-20

C.2.1.3 PRISMA GNC Test Plan

Testing of the GNC Software consists of four different campaigns:

� Unit Tests

� Integration Tests

� Software System Tests

� All-Soft Testing

The Unit Tests verify the 3rd level requirements applicable to each Core in a Simulink
environment. The Integration Tests consist of a “max-path” “max-load” test for each Core as
well as of an interface test for integration in the all-over on-board S/W. The Software System
Tests are scenario based system level tests executed on flight representative computer in
real-time. The All-Soft tests consist of faster than real-time tests of all flight representative
procedures.

C.2.1.3.1 Unit Testing

The unit tests are used to verify the 3rd level requirements applicable to the GNC S/W

cores.

The tests are constructed as a Simulink “test harness” model what may take source data
from a file as input. The test shall be possible to execute automatically and for each test there
shall be an expected result output sequence to which the test result shall be autonomously
compared for a pass/fail check of the result. As much as possible, the test shall be “model
free” in the sense that the test shall not require any closed loop simulation of on-board
functions in combination with simulation models.

All the unit tests will be executed as an autonomous “batch” job before any release of the

GNC Cores. The tests are executed in the MATLAB/Simulink environment only. Similar
types of unit tests are implemented for the on-board S/W cores as for the simulator modules.

C.2.1.3.2 Integration Testing

Integration testing is performed on core level as well as on software system level. On core

level, much functionality is included in Simulink that guarantees the correct integration of
the modules contained in the core. For this reason, the core level integration testing is limited
to a “max-path” input/output sequence test that exercises as much as possible of the core’s
functionality simultaneously.

In addition to the core level tests, a dedicated integration test is performed on software

system level. This test is an interface test that takes “dummy” cores containing the correct
signal I/F and selectable signal sources. These dummy cores are then included in the on-
board S/W and executed in the SATLAB environment. The tests systematically verify the
complete signal chains from Simulator to CAN to TM and from TC to CAN to Actuator.

C.2.1.3.3 Software System Testing

Software system testing takes place in the real-time SATLAB Environment. One such

simulation environment is dedicated to GNC tests.

C-21

The GNC Software System Tests are executed in the framework of test scenarios that
correspond to the fundamental mission phases as well as to basic S/C functionality. Testing
focuses on 2nd level GNC requirements and all-over performance. The tests are script-based
and shall be executed w/o any manual interaction. In this way, the tests are fully repeatable
allowing for automated results analysis. To the highest extent as possible pass/fail criteria
shall be checked in the test scripts.

C.2.1.3.4 SATLAB Environment

The SATLAB Environment is a real-time test environment for the verification of the

PRISMA on-board S/W. The environment consists of a real-time simulator (SatSim) running
models of the MAIN and TARGET S/C, their sensors and actuators and the space
environment. The simulator is connected via CAN busses to one EM Core Board running the
MAIN S/W and one EM Core Board running the TARGET S/W. The simulator is also
connected to RAMSES for its command I/F. RAMSES is also connected to the TM/TC I/F
of the MAIN Core Board. The SATLAB environment also has the possibility to include an
EM ST/VBS in the loop.

SatSim

RAMSES

MAIN CAN Bus

RAMSES Network

SATLAB Environment

TARGET S/C

EM Core Board
TARGET CAN Bus

MAIN S/C
EM Core Board

TM/TC

MAIN S/C
EM Core Board

TM/TC
TM/TC

FEE

EM

ST/VBS

Serial PUSIM

Serial I/F

Optional

Figure 10: SATLAB Environment [23]

C.2.1.3.5 Test Execution

The Software System Tests are executed within the framework of a set of Test Scenarios.
These scenarios represent fundamental attitude functionality of the MAIN and TARGET
spacecraft, initial acquisition of the COMBINE S/C, separation of TARGET from MAIN
and specific functionality of the AFF, ARV, and PROX/FARM Modes. In addition, tests are
executed by CNES and DLR in their separate modes.

A number of Test Cases are executed within each of these scenarios. The test cases verify

basic functionality of different functions of the GNC software, handling of failures in
different sensors and actuators and the performance of a set of representative maneuvers in

C-22

the AFF, ARV, and PROX/FARM modes. Several of the test cases are executed in more
than one of the test scenarios.

In addition to the Software System Testing, an all-soft simulator is implemented. This

simulator consists of a compiled version of a MATLAB/Simulink model containing the
simulator Simulink models as well as the Simulink models used for on-board S/W
generation. This model uses a command interface similar to the RAMSES command scripts.
The all-soft model executes as fast ass possible, preferably faster than real-time. The model
is used to verify all the GNC related mission phases and cases.

The all-soft tests verify in particular the GNC subsystem performance and the sequence

order of the different mission phases and execution cases.

C.2.1.3.6 All-Soft Testing

In addition to the Software System Testing, an all-soft simulator is implemented. This

simulator consists of a compiled version of a MATLAB/Simulink model containing the
simulator Simulink models as well as the Simulink models used for on-board S/W
generation. This model uses a command interface similar to the RAMSES command scripts.
The all-soft model executes as fast ass possible, preferably faster than real-time. The model
is used to verify all the GNC related mission phases and cases.

The all-soft tests verify in particular the GNC subsystem performance and the sequence

order of the different mission phases and execution cases.

The GNC Subsystem is verified with a series of H/W in-the-loop tests. Both Open Loop
Tests and Closed Loop Tests are executed. The tests are executed in two different
environments i.e. BTM and AIT.

C.2.1.3.7 Open Loop Tests

The purpose of the open loop tests is to verify the correct response in the complete

sensor-software-actuator chain. the purpose is to also verify the correct magnitude and
characteristics of the response

C.2.1.3.8 Closed Loop Tests

The purpose of the closed loop tests is to verify the system behavior in a closed loop

setting running the on-board S/W involving as much H/W as possible in the loop. The
principle behind the AIT/BTM closed loop testing is to include as much as possible of the
on-board H/W.

The closed loop test setup has the following limitations:

� It is not truly closed loop since the S/C does not move as a result of its actuators.

Rather, the test is a simulation involving H/W in the loop.

� It does not use the real sensors since sensors are in general not equipped with
stimulation ports. Exceptions are the ST which can be directly stimulated and
possibly the rate sensors.

C-23

On the other hand, the test setup includes as much hardware in the loop as is possible
with reasonable effort.

C.2.2 Interview Analysis Results

C.2.2.1 Theme 1: Verification Activities in practice

Everything is mostly testing. The whole team is involved in it. Requirements and test
cases are written at the same time. Test cases are functional oriented and driven by mission
definition. They had a consultant who worked on ESA projects previously and brought the
idea of V&V activities and then they further developed their ideas based upon it. Unit testing
is performed by the developer in the same development environment. If the units are too
large then they need some independent resource, it also depends upon the requirements from
the customer. Defects are not logged at unit testing.

System requirements or equipment requirements comes from the client which are then
broken down by subsystem managers in to sub-system (level 2) requirements which are then
further broken down by the developers into unit or implementation requirements (level 3).
Unit testing is based upon level 3 requirements. Assurance of the completeness of testing
process is done by 3 things:

� Use of SIMULINK, for automated generation of code which is better than hand
written code and minimizes syntax errors

� Unit tests are based on level 3 requirements which are written by the developer
himself and he keeps in mind to write testable requirements

� Architecture is made to be testable

The developer is responsible to deliver the whole working unit. Each unit has input and
output interface. The scripts are written for input data and the output is compared with the
requirements. Input can be hardcoded are well. Regression testing is done in case of any
change in implementation due to change in requirements are made.

Requirements are stored in DOORS, and test cases and test procedures are defined in
mercury. One requirement can have multiple test cases and one test case can be linked to
multiple defects. NCR is generated for each defect which is linked with SPR database. They
use model driven approach and perform model coverage but not code coverage. Automated
code is generated from Matlab and testing is done for models and not on automated
generated code.

They define the test cases but run them automatically. The trick is to find the initial
condition and the success criteria. System testing is independent and is carried out at
integrated environment. System testing is focused on single functionality at a time. Python
script is used to check the output. Unit tests are run automatically at the GNC level and in the
end a report is generated if they pass or not. This also checks if any module is missing. Same
tests are run on TSIM and SIMULINK and then the results are compared. Stress testing and
duration testing are done after system testing by using telecommands and telemetry on

C-24

isolated cores. After subsystem testing clean run process is done, if defects are found at this
stage, then changes are made by doing some scenarios and after that the complete hardware
and software is tested on satellite.

In a project called ODEN, SSC was responsible for independent validation and it was
carried out after the development by a separate company. They had to deal with many issues
like quality discrepancies, misunderstanding and communication and the project was not
completed on time.

Mercury Quality Center, SATLAB, MATLAB/SIMULINK, TSIM by GAISLER,
DOORS, Hansoft, In house simulator by AOCS, ESA coverage Tool Box are tools which are
used in the V&V process. OHB will provide testing environment for SMALL GEO, which
will not be validated by SSC. They have informal reviews on requirements, test readiness
and preliminary design without checklists. Having V&V experts early in the process will
improve the quality of requirements.

They reuse the same testing environment, but in Small Geo OHB (prime contractor)

will provide them with it. They don’t start plans from scratch, if they have used models
then they also use the code and V&V plans for it as well, but they are behind in
reusability. The idea is to have portable models, codes and test cases and not ad hoc
solutions. Things are implementation specific but some can be reused. They use ideas of
Smart1 with improvements; however the whole test plan can’t be reused because of different
mission specific variables. Some mission variables differ at higher level, which are more
general at the end. Software becomes very costly in space projects especially if they include
man hours for development and V&V and they want to improve themselves in reusability.

The projects at SSC are critical because they can’t change anything except the software.
Once it is in operation they can’t take any feedback on it, so they have more emphasis on
testing and validation and mission critical things. They have longer projects and large
number of subsystems are working together. It is difficult to get interaction between all of
them as huge amount of data flows between them and most of the things are newly built. So
it takes a longer time to test the whole system. The approach at SSC is very rigorous as they
have single failure tolerant systems. Unit testing is very extensive at SSC. In space craft
sometimes they have to run specific duration tests for a certain period of time to check if it
behaves accordingly.

C.2.2.2 Theme 2: efficiency of Verification Activities

They found defects which are not local at that stage because their testing environment is
not fully representative of the target environment. A common mistake they do is they are too
much in a hurry to show progress in the beginning that can have problems in the design
which can be costly to remove in the later stages. In design review they find defects relating
to conflicting requirements and requirements discrepancies. At the highest level many people
are involved and they don’t have the idea about the constraints on requirements. At unit level
sometimes they implement things which are not linked to the top level due to the conflicts in
requirements, sometimes they implement things based upon their own knowledge. In some
cases while working with unit testing they find problems in the requirements because

C-25

everyone doesn’t have the full picture. At unit testing they find logical errors, boundary
errors and clashes between requirements. Change in requirements can also have clashes
between requirements.

They don’t have formal specification of what each module should do. There are few
things that are interpreted by the designer himself this is also one of the reasons for faults to
slip through.

All unit tests must pass and each time an error is found they fix it, without logging
anything in the database. They log defects at the sub system level and later stages but have
different reporting systems and map them manually. The defects are reported as software
problem reports (SPRs), software change requests (SCRs) and non conformance reports
(NCRs) and they use different reporting systems for NCRs and SPRs, SCRs. It is not evident
if something is logged as a defect or a change. Defects are connected to test cases in mercury
and test cases are connected to requirements in DOORS. They document test data, time to
resolve, criticality, files, baseline software version and also test set up for a particular defect
in mercury and then it is mapped to the specific sub project and assigned to the developer to
fix it. Defects are mainly classified according to priority and severity and sub systems, which
is a vague classification. Test cases are functionally oriented and they correspond to the parts
of the mission. Mercury is a very efficient tool for keeping track of passed and failed test
cases and their coverage.

They measure the total development time and that includes the fixing of bugs as well.

This is done at a very high level, and they use these estimates in other projects. They are
using scrum and in each sprint set goals and measure and later check whether they succeeded
in it or not. Each sprint has other activities as well. V&V activities should be separated from
other activities and they should use matrices to measure the efficiencies of them as well.
They calculate the time spent on fixing SPRs. They have matrices for the number of verified
requirements, model coverage and test cases.

They are beginning to use test driven development in their projects. The main idea is to
let the test cases be the requirements and instead of writing detailed requirements (level 3)
and then write code and then do unit testing, they want to skip the detailed requirements.
Main purpose is to have more focus on testing in the beginning and not push it to the end and
to have more focus on testing than implementation. They will develop test cases and system
test cases from the beginning which will reduce the number of defects. They will try to
measure the progress of a project in terms of test cases that are covered. It will force them to
think ahead and identify much earlier if they need certain testing environments. It can also
give them an estimate about the efforts they need and the time it would take. The
development cycles would go much faster and will enable them to focus more on important
things. But no workshops or training sessions has been held for test driven development.

It is a limitation that they don’t have any internal verification board or team which
overlooks their activities. Everybody is involved in their own projects. At some stage they
ought to have an independent validation but in having completely separate team doing all the
validation can result in the loss of information. Developers can interchange code and review
each other’s work as well.

C-26

C.2.2.3 Theme 3: ECSS standards

In Smart1 they used PSS05 which were more strict and prescriptive than ECSS. SSC had
less formal testing procedures and they had clashes with ESA. ESA couldn’t understand the
way SSC develop things and SSC thought that ESA only wants useless documentation from
them that requires a lot of work. ECSS standards are high level, general and abstract, they
don’t follow it formally but the general flow is the same. Sometimes the people are
following it but they don’t know about it. It prescribes to produce certain documents which
drive the project. In Smart-Olev, the Dutch prime contractor took ECSS standards very
seriously and asked all the sub contractors to use them as it is. This joint venture didn’t work
because the sub contractors came back with their cost estimates. That is why tailoring of
ECSS standards is very important. ESA has many technical experts and they can gather
people from academia as well to comment upon what should be done and what should they
prove and it is very difficult to completely comply with all the requirements. The
commercial customers don’t have that insight. SSC has allocated a person who makes
strategies to make their processes in compliance with ECSS standards and keep track of its
requirements and documents to produce.

ECSS is a standard that ESA wants all sub contractors to use, to have common
documentation and language. It improves communication between primary and sub
contractors. It also give knowledge about which activities to follow for non ESA projects as
well like for instance in PRISMA the way they worked was based on ESA standards but they
tailored it.

At the same time they also feel that good quality doesn’t mean if they have read ECSS
standards or not, its like an ISO 9000 standard. It is very comprehensive and general and has
a lot of text. It is not applicable for small projects due to high cost associated with it. It is
abstract and people can misunderstand them and refrain from using things which are very
beneficial, only to make sure that they stay in compliance with ECSS standards. It can also
be misused as a tool by the customers who may not have the idea about the cost of certain
activities like formal proof checking and tree analysis. It is hard to map things from ECSS to
projects and investment varies from project to project. People become reactive due to these
standards and only produce the list of things which are asked to such an extent that it
hampers innovation. There are no implied processes mentioned in the ECSS standards and
producing same set of documents for every release is very costly.

C.2.3 Web-based Questionnaire Analysis Results

C.2.3.1 Introduction

An online survey has been conducted at SSC to get a certain level of understanding
about the V&V activities which they perform. The total respondents were 18, having varying
level of expertise in terms of experience, age, areas of software development and testing and
projects in which they worked at SSC.

C-27

C.2.3.2 Areas of software development

The survey results show that 83% of respondents are involved in software requirements
engineering but only 39% are involved in system requirements engineering. 67% are
involved in architectural design and validation/system testing where as 61% are involved in
detailed design, implementation, integration testing, requirements review, tool development
and unit testing. 55% are involved in design review and project management. 44% are
involved in acceptance testing and code review. 28% in quality assurance, 22% in
development support, 16% in management and only 5% in mission analysis and coordination
between projects.

C.2.3.3 Experience in software development

33% of the respondents had an experience in software development between 5 to 10
years, 22% between 10 to 15 years, 16% between 15 to 20 years, 5% had greater than 20
years, 16% between 3-5 years and 5% had less than 1 year.

C.2.3.4 Experience in V&V

23.5% of the respondents had 5 to 10 years of experience in v&v, 17.6 % had between 1
to 2 years, 10 to 15 and less than 1 year, separately, 11.7% had 3 to 5 years and 5.8% had
between 15 to 20 years and greater than 20 years, separately.

C.2.3.5 Knowledge about ECSS standards

22.2% of the respondents knew the contents and how it affects their software
development activities where as 33.3% had never heard about it. 11.1% knew in detail what
it prescribes and its consequences for their software development and 33.3% knew them
roughly.

C.2.3.6 Degree to which ECSS affect their software development

activities

16 % of the respondents were of the opinion that the degree to which ECSS effect their
software development activities is high, 44.4% said its low where as 38.8 % said its vey low

C.2.3.7 Effect of ECSS on the quality of software

33% didn’t answer about the effects of ECSS on the quality of software. However,
amongst the remaining respondents 58.3% said somewhat positive, 25% said its mostly
positive and 16.7% said its mostly negative

C.2.3.8 Effect of ECSS on the efficiency of software development

33% of the respondents didn’t answer about the effect of ECSS on the efficiency
of software. However, amongst the remaining respondents 41.6% said its somewhat positive,
33.3% said its somewhat negative, 16.6% said its mostly negative and only 8.3% said its
mostly positive.

C-28

C.2.3.9 Effectiveness of verification activities

� Requirements review - 27.8% are not involved in it, 16.7 said it is very effective,

38.9% said effective and 16.7 % said ineffective

� Design review - 27.8% are not involved in it, 16.7% said it is very effective,
38.9% said effective and 16.7% said ineffective

� Code review - 44.4% are not involved in it, 38.9% said it is effective and 16.7
said ineffective

� Unit Testing - 38.9:% are not involved in it, 44.4% said it is very effective, 5.6%
said effective and 11.1 said ineffective

� Integration Testing - 44.4% are not involved in it, 38.9% said it is very
effective, 11.1% said effective and 5.6% said very ineffective

� System Testing - 22.2% are not involved in it, 50% said it is very effective, 16.7
said effective 5.6% said ineffective and the same percentage said very
ineffective

� Validation Testing - 38.9% are not involved in it, 22.2% said it is very effective,
the other 22.2% said effective and 11.1% said ineffective and 5.6% said very
ineffective

� Acceptance Testing - 50% are not involved in it, 16.7% said it is very effective,
the other 16.7 said effective, 11.1% said ineffective and 5.6% said very
ineffective

C.2.3.10 Effort which the verification activities require

� Requirements review - 22.2% are not involved in it, 11.1% said that it requires

very high effort, 27.8 said high effort and 38.9% said low effort

� Design review - 27.8% are not involved in it, 5.6% said that it requires very
high, 33.3 said high effort and 33.3 said low effort

� Code review - 38.9% are not involved in it, 16.7% said that it requires very
high, other 16.7% said high effort, other 16.7 said low effort and 11.1% said
very low effort

� Unit Testing - 33.3% are not involved in it, 22.2% said that it requires very high
effort, 27.8 said high effort and 16.7% said low effort

� Integration Testing - 38.9% are not involved in it, 50% said it requires high
effort and 11.1% said low effort

� System Testing - 16.7% are not involved in it, 33.3% said that it requires very
high effort, 44.4 % said high effort and 5.6% said low effort

C-29

� Validation Testing - 33.3% are not involved in it, 11.1% said that it requires
very high effort, 44.4 said high effort and 11.1% said low effort

� Acceptance Testing - 44.4% are not involved in it, 11.1% said that it requires
very high effort, 22.2 said high effort and the other 22.2% said low effort

C.2.3.11 Change in VA, if ECSS is not relevant

� Requirements review - 16.7% are not involved in it, 38.9% won’t change the

effort on it where as 38.9% said they would like to put more effort on it where as
only 5.6% said they would put less effort on it

� Design review - 22.2% are not involved in it, 55.6% won’t change the effort on
it, 16.7% would put more effort on it and 5.6% would put less effort on it.

� Code review - 38.9% are not involved in it, 27.8% won’t change the effort on it,
16.7% would put less effort on it and the other 16.7 would more effort on it.

� Unit Testing - 33.3% are not involved in it, 38.9% won’t change the effort on it
and 27.8% would put more effort

� Integration Testing - 33.3% are not involved in it, 50% won’t change the effort
and 16.7% would put more effort

� System Testing - 22.2% are not involved in it, 66.7% won’t change the effort
and 11.1% would put more effort

� Validation Testing - 33.3% are not involved in it and 66.7% won’t change the
effort

� Acceptance Testing - 38.9% are not involved in it, and 55.6% won’t change the
effort and 5.6% would put more effort

C.2.3.12 Percentage of V&V activities of the total development

costs

29.4% said the cost should be 60%, 23.5% said the cost should be 30%, 17.6% said it
should be 50%,the other 17.6 % said that it should be 70% and 11.7% said it should be 80%

C.2.3.13 Weighted-average calculation

Knowledge about ECSS Standards

I have never heard of it - 1
I know roughly what it is about – 2
I know its contents and how it affects the SWD activities - 3
I know it detail what it prescribes and its consequences for SWD – 4
I am an ECSS expert and have worked actively in implementing and adopting it – 5

C-30

18 people answered

(6*1) + (6*2) + (4*3) + (2*4) + (0*5)/18 = 2.1

Degree to which ECSS affect the SWD

Very high – 4
High – 3
Low – 2
Very low – 1

18 people answered

(7*1) + (8*2) + (3*3) + (0*4)/18 = 1.8

Degree to which ECSS affect the quality of SW

Mostly positive – 4
Somewhat Positive – 3
Somewhat Negative – 2
Mostly negative - 1

12 people answered

(3*4) + (7*3) + (0*2) + (2*1) /12 = 2.9

Effect of ECSS on the efficiency of software development

Mostly positive – 4
Somewhat Positive – 3
Somewhat Negative – 2
Mostly negative - 1

12 people answered

(1*4) + (5*3) + (4*2) + (2*1) /12 =2.4

Effectiveness of verification activities
Very effective- 4
Effective-3
Ineffective-2
Very Ineffective-1

Requirements Review
5 people are not involved in requirements review

(3*4) + (7*3) + (3*2) + (0*1) /13=3

Design review
5 people are not involved in design review

(3*4) + (7*3) + (3*2) + (0*1) /13=3

Code review

8 people are not involved in code review

(0*4) + (7*3) + (3*2) + (0*1)/10=2.7

C-31

Unit testing

7 people are not involved in unit testing

(8*4) + (1*3) + (2*2) + (0*1)/11=3.5

Integration testing
8 people are not involved in integration testing

(7*4) + (2*3) + (0*2) + (1*1)/10=3.5

System testing
4 people are not involved in system testing

(9*4) + (3*3) + (1*2) + (1*1)/14=3.4

Validation testing

7 people are not involved in validation testing

(4*4) + (4*3) + (2*2) + (1*1)/11=3

Acceptance testing
9 people are not involved in acceptance testing

(3*4) + (3*3) + (2*2) + (1*1)/9=2.9

Effort which the verification activities require
Very high effort- 4
High effort -3
Low effort-2
Very low effort-1

Requirements Review
4 people are not involved in requirements review

(2*4) + (5*3) + (7*2) + (0*1)/14=2.6

Design review
5 people are not involved in design review

(1*4) + (6*3) + (6*2) + (0*1) /13=2.6

Code review

7 people are not involved in code review

(3*4) + (3*3) + (3*2) + (2*1)/11=2.6

 Unit testing
6 people are not involved in unit testing

(4*4) + (5*3) + (3*2) + (0*1)/12=3.1

Integration testing
7 people are not involved in integration testing

(0*4) + (9*3) + (2*2) + (0*1)/11=2.8

System testing

3 people are not involved in system testing

(6*4) + (8*3) + (1*2) + (0*1)/15=3.3

Validation testing
6 people are not involved in validation testing

(2*4) + (8*3) + (2*2) + (0*1)/12=3

Acceptance testing

C-32

8 people are not involved in acceptance testing

(2*4) + (4*3) + (4*2) + (0*1)/10=2.8

Change in VA, if ECSS is not relevant

Would put more effort on - 4
No change - 3
Would put less effort on - 2
Would not do activity at all - 1

Requirements review

3 people are not involved in requirements review

(7*4) + (7*3) + (1*2) + (0*1)/15=3.4

Design review

4 people are not involved in design review

(3*4) + (10*3) + (1*2) + (0*1) /14=3.1

Code review
7 people are not involved in code review

(3*4) + (5*3) + (3*2) + (0*1)/11=3

Unit testing

6 people are not involved in unit testing

(5*4) + (7*3) + (0*2) + (0*1)/12=3.4

Integration testing
6 people are not involved in integration testing

(3*4) + (9*3) + (0*2) + (0*1)/12=3.25

System testing
4 people are not involved in system testing

(2*4) + (12*3) + (0*2) + (0*1)/14=3.14

Validation testing

6 people are not involved in validation testing

(0*4) + (12*3) + (0*2) + (0*1)/12=3

Acceptance testing
7 people are not involved in acceptance testing

(1*4) + (10*3) + (0*2) + (0*1)/11=3.1

D-1

Appendix D

This appendix provides information about RUAG Aerospace Sweden AB. It provides the
summaries of interview, survey and document analysis conducted for data collection at

RUAG Aerospace.

D-2

D.1 Introduction

RUAG Aerospace Sweden AB (RUAG) was formerly known as SAAB Space AB but
was recently acquired by RUAG Aerospace, and thus changed their name. RUAG has a very
long and vast experience concerning design, development and delivery of both hardware and
software for computer and data handling related products in space programs. The main
product areas are Data management systems, Fault-tolerant computers and processor
products, Payload control computers, Data processing and Small mass memories. The
software developed by RUAG for these computers is in the range from small boot software
to full application software, but the main focus is on hardware-near, embedded, real-time
software. The software development process used is based on the ECSS standards, mixed
with an integration driven development approach.

D.2 Data Collection/Study Results

D.2.1 Document Analysis Results

RUAG develops a Software Development Plan (SDP) at the start of each project which
addresses customers and different team like development, validation and maintenance. This
document defines the overall planning for the development of the software and covers all the
activities concerning development, verification, validation and maintenance of the software
during whole software life cycle. SDP is a main document and defines what activities will be
performed. It does not explain how these activities will be performed. The details of those
activities are discussed in relevant plans like Software Configuration Management Plan
(SCMP), Software Verification Plan (SVerP), Software Validation Plan (SvalP), Software
Product Assurance Plan (SPAP) etc. RUAG has defined three organizational levels for
software development:

� Software level – The level where are the activities defined in SDP are

performed.

� Product/System/Project level – The level where overall planning and
management of the project is discussed. It is the higher level than software level
and is referred as next-higher level in SDP. It defines Requirement Baseline
(RB) for the software and performs RAMS activities.

� Customer level – This level corresponds to all external customers.

RUAG has a well defined software object organization setup with predefined roles and
responsibilities. Object Manager (OM), SW Verification Responsible (SVeR), SW
Specification Responsible (SR), SW Design Responsible (DR), SW Design Engineer (DE),
SW Validation Engineering (VR) and SW Validation Responsible (VR) are the major roles
in the software object organization. Manager of software department is responsible for
selecting team for the project and for conducting a just-in-Time introduction to each software
life cycle phase for those who need it. RUAG has classified software into three main
categories:

� Boot Software – Known as critical software. It should be fully verified (code
inspected, unit tested and integration tested) and validation tested. HSIA will be
performed.

D-3

� Monitor Software – It is used for test purposes and is only verified through code
inspection. Validation testing is performed as well.

� AT95 – it is not critical software but is fully verified through code inspection,

unit tested and integration tested. Validation testing is performed at the end.

SDP has a section which explains the activities necessary to be performed at each
development stage (Planning, Specification, Production and Validation) for the above
mentioned software categories. It also lists down the software which will be reused for that
particular project. Details on the reuse are further explained in Software Reuse File (SRF).
Software deliveries are planned and described briefly in SDP.

D.2.1.1 Software Development life cycle

Software development life cycle provides a reference framework for software phases and

activities. It specifies the relationship between project phases, transition criteria, feedback
mechanism, milestones, baselines, reviews and deliverables.

Integration-driven Development (IDD) approach is used along with waterfall reviews for

software development. IDD is introduced to develop, test and integrate software increments
concurrently. Software development life cycle at RUAG has five phases: Software planning
phase, Software specification phase, Software production phase, Software RB-validation
phase and Software maintenance phase. Figure D-1 further explains software development
life cycle along with IDD and ECSS reviews. In this figure SRR: System Requirement
Review, SW-PDR: Software Preliminary Design Review, SW-CDR: Software Critical
Design Review, SW-QR: Software Qualification Review.

RUAG is working with ESA, so they have to follow certain software standards like ECSS

and Galileo. These standards mostly recommend waterfall approach with predefined
reviews, for software development. Since the space projects are very critical and waterfall in
nature, so before starting the incremental IDD approach they have to ensure some pre-
requisites:

� The RB must have been specified at a comprehensive level along with non-

functional requirements (Performance and design constraints)

� SDP, SCMP, SPAP, SUTP, SITP, SVerP and SValP must be developed. A top-

level architectural software design must exist

� Tools and development environment must be set up

ESA allows using IDD but at the same time it demands for all the reviews for each

increment. These reviews are very costly and sometimes are impossible to be fully
performed at some particular stages. For example it is not possible to perform full PDR using
IDD because they don’t have complete details. IDD uses four internal reviews for each
increment.

D.2.1.2 Requirements Review (T0):

Requirements Review is performed before the start of each integration step to ensure:

D-4

� The requirements in RB for this integration step are reviewed and approved

� The requirements in TS for this integration step are reviewed and approved

� Architectural design for this integration step is reviewed and approved

D.2.1.3 Integration Readiness Review (T1):

This review is performed after the development and verification of the unit. It is done to
ensure:

� The detailed design for the integration step is described

� Source code is implemented and successfully implemented and code inspected

Phases:

Lifecycle

process:

Major

activities:

Planning Specification Production RB-validation

System engineering

Requirements and architecture engineering Design and Implementation engineering Delivery and acceptance

Validation

Verification

Plan Software development

Plan Software configuration

Kick-off SRR SW-PDR SW-CDR SW-QR

Perform RB-
validation tests

Integration-driven Development

Figure 11: Software development life cycle [24]

D-5

� Source code is successfully unit tested

� Validation test cases are identified, specified and implemented

D.2.1.4 Integration Closure Review (T2):

This review is performed after the integration has been performed to ensure:

� All validation tests/analysis related with the integration step have been executed

successfully.

D.2.1.5 Test Readiness Review (TRR):

TRR is performed before the validation test campaign of the whole software starts to
ensure:

� All the integration steps successfully performed

� Software documentations, source code and test facilities are under configuration

control

� No open SPRs or NCRs exist

A review success criterion has been defined for each review. A review is considered

successful if the review objectives are met and all RIDs and review related actions are
closed. A review can end up as successful, successful with rework to done and not
successful. Figure D-2 further explains this idea:

D-6

Integration step n Integration
step n-1

.

Specify requirement and architecture design

Verify requirement and architecture design

Design, code and unit test
Software Units

Verify Software Units design,
code and unit tests

Specify and implement
validation test cases

Verify validation test cases

Execute validation tests
(Preliminary)

Requirement Review (T0)

Integration Readiness review

(T1)

Integration

Closure (T2)

Production kick-off
TRR

Figure 12: Integration-driven Development with internal reviews [24]

D-7

D.2.1.6 Software Verification and Validation Plan (SVVP)

RUAG develops a comprehensive verification and validation plan for each project. This
document defines overall planning of the verification and of the software and covers tasks
and decisions related to verification and validation through the whole software development
life cycle. It mainly addresses customers, verification and validation team and maintenance
team. Role and responsibilities along with schedule for software verification and validation
are explained in SDP.

The administrative procedure of software verification is well defined by explaining

anomaly reporting, software verification reporting, task iteration policy, deviation policy,
control procedures, and standards. Software design team is responsible for major verification
activities (Requirements verification, Design verification, Code verification, Module testing,
Module test verification, Integration testing) and software validation team is responsible for
verification of the validation test cases and analysis specification explained in validation test
specification against Technical Specification (TS) and Requirements Baseline (RB).

Most of the software modules are written in C language and module tested in UNIX

environment on ERC32 (TSim) and Cantata framework. Some parts are written in Assembler
and are tested in a special environment called SDTE.

D.2.1.6.1 Verification of software requirements

Software requirements are complied in Technical Specification (TS) which are derived

from Requirements Baseline (RB). The requirements (TS) are verified against the next
higher level (RB). The requirements are verified with respect to compatibility with RB,
Accuracy and consistency, Feasibility, Validation of software, Clarity, Absence of
unnecessary constraints and conformance to standards.

Software requirements are verified by means of reviews of the TS. These reviews are

conducted both internally and externally with customers as well. A comprehensive checklist
for internal reviews along with prototype is used to check the consistency and feasibility of
the review.

D.2.1.6.2 Verification of Software architecture design

Software architectural design is verified with respect to compatibility with software

requirements, consistency, shared resources, and compatibility with target computer,
verifiability, clarity and conformance to standards. Software architecture design is verified
by the means of reviews of the software design, timing and sizing budget, module integration
testing.

D.2.1.6.3 Verification of Software design and code

Software design and code is verified with respect to compatibility with software

requirements, compliance with module specifications, compliance with software
architecture, verifiability, clarity, and conformance to standards. Software code is verified by
means of code inspection and module testing. Code inspection is performed using a
checklist. Verification of the design is performed by means of integration testing.

D.2.1.6.4 Verification of traceability

D-8

RB requirements are traced to the TS requirements which are in turn traced to the
architectural design classes. At module level, a matrix is used to trace the module to the
corresponding module test cases.

D.2.1.6.5 Validation of built software product

Validation of the software is validated with respect to compliance to functional and

performance requirement to assure that the software product reliably behaves in accordance
with TS and requirements RB. Software product is also verified with respect to
miscellaneous software requirements to assure the confidence on the reliability, availability
etc.

RUAG uses a re-verification approach instead of regression approach to show that a base

line software that has been changed still meets functional and performance requirements.
This approach at integration testing verifies and validates correct implementation of software
problem reports/non conformance reports/change requests (SPRs/NCRs/CRs), any change in
functionally or testing environment, and components calling or called by the changed
module. Re-verification is carried out in same original verification environment. Same set of
tools, techniques and methods are used.

D.2.1.6.6 Software validation:

Software validation team is responsible for validation of Technical Specifications (TS-

validation), Requirements Validation (RB-validation) and related non-regression testing.
Non-regression testing is performed to ensure the correctness of the software when it has
changed after validation.

Role and responsibilities for software validation are specified in SDP. Validation is either

performed by testing or analysis depending on the nature of the requirement. Validation by
analysis is performed when testing is not feasible. Software Development and Testing
Environment (SDTE) described in SDP along with the scheduled activities is used for
validation. Validation tasks are mainly performed in the software integration and TS-
validation phase and software RB-validation phase.

D.2.1.6.7 Software testing standards

RUAG performs testing at three stages: module testing, integration testing and validation

testing. Test coverage during whole test campaign is defined by testing/analyses to verify all
the TS/RB requirement, 100% statement and decision coverage at source code level and all
types of test cases applicable to module, integration or validation testing must be taken into
account.

D.2.1.6.8 Module testing:

Module testing aims to verify the behavior of the module. Module test cases normally

include stress testing, robustness testing, tests for data, logic coverage tests. Data test
includes equivalence portioning and boundary value analysis. Different approaches are used
for boot software and non-critical or test software which is explained in related plans.

D.2.1.6.9 Integration testing

Integration testing aims to verify the dynamic interaction of the modules to ensure that

they are working correctly together. The testing is performed on the hardware, each couple

D-9

of “calling-called” software component is activated and functions of each software are
activated at-least once.

D.2.1.6.10 Validation testing

Validation testing is performed to ensure that the software meets functional and
performance requirements and is designed to find out the discrepancies between software
and its requirements. The strategy for the validation testing is as follows:

� Testing is done to find the faults

� Testing is planned for zero fault tolerant

� No assumptions should be made about implementation of the code

� If testing is not possible then the requirement will followed by analysis

� Validation is done independently

� Test cases are written for valid and expected, valid unexpected conditions

� Both normal and abnormal behavior should be taken into account.

The validation of the boot software is separated from the validation of the service or test
software as it requires different testing environment. Functional, interface, fault injection and
robustness testing is taken into account at this stage.

D.2.2 Interview Analysis Results

D.2.2.1 Theme 1: Verification Activities in practice

At RUAG, they have rigorous VAs, as the software systems for space industry are
very critical. The main activities are code inspection, module testing and qualification testing
which is now called SW validation testing and which is also the term used in ECSS as well.
They also do integration testing which is not the main activity. They try to re use module
tests or validation tests as basis for integration tests to keep the effort down but they don’t
skip this process completely but try to minimize the work effort in between. As the
requirements are only in the form of text so they review them against check lists, this is the
same with design, as it is in UML which can’t be executed like code.

Documents such as requirements specification, detailed design and all sort of produced

documents are reviewed and reviewers are set up depending upon the kind of documents.
The verification performed at earliest stages of the project is reviewing the requirements or
documents and then they break the equipment requirements into module requirements which
are the system level requirements at different parts of the unit. Then reviewing the module
requirements against the equipment requirements, focusing on equipment requirements
which cannot be fulfilled by one module and check for their consistency.

Then the information is passed onto software development team (software object). They

interpret requirements from the module requirements document also called the software
system specification and the requirements baseline. They start interpreting system level
requirements to preliminary design and define their requirements specification which are
reviewed and verified by the software system manager. He also reviews the architecture
design and preliminary design.

D-10

The next step is writing validation plan describing what they are going to do, the kind of
test techniques they will use and how the test equipment should behave by specifying and
allocating each test case for every requirement. Different test cases draw up the outline what
the tests will do. The next step is implementing everything and reviewing test code to make
sure they are correct with respect to the test specification and if required make any final
configuration to the test equipment. If they can’t test everything they do the manual analysis
and document them in the report.

Validation is performed against the requirements baseline. They have issues at different

levels of requirements. In one of the projects (NSG) they have acceptance testing which is
one level above validation. At the lower levels of verification they have strict conditions for
fulfilling tests by having 100 % statement coverage and 100% coverage of requirements
baseline. They have basic foundation about the things they should test and for each module
test they state which units are tested and which aspects and things are covered. External
interfaces are more thoroughly tested because internal parts are also covered by reviews,
especially if they provide an API they focus more on external interfaces.

They cover the code by unit testing and check if they have gone through the whole

module. When it comes to requirements, architecture design, test specification, coverage of
tests against requirements they do manual review of documents and when it comes to code
they do manual review against requirements, the design document, coding standards,
hardware-software interfaces, control documents.

They use requirements database DOORS to specify the requirements and test cases and it

provides traceability between them. It also gives them an idea about the kind of test
equipment they will need in the project. They try to state them as such that they are verified
using black box testing. If they have non functional requirement in their testing plan then
they verify them, but they don’t have all the required figures related to them. Mostly, non-
functional requirements are verified by inspections. They also use special performance tests
to stress all the channels at the same time and get CPU load very high and apply test
campaigns with different scenarios.

They don’t have any requirements on how to do inspections or reviews on the code or

requirements. The requirement they have is that code shall be verified and that it shall be
verified against some rules. Their inspection and reviews are not completely formal and not
completely informal either. They have well established check lists and clear scope of what
they should inspect in documents. The manual inspection is complemented by Splint and
Flexelint-tool, which cover certain aspects of code and static analysis of code metrics.

They inspect 100% code but they always have an issue on how much is covered from the

coding standards. Review is dependent upon the person doing. It is better if the person doing
it have the knowledge about the coding standards and the way they implement things. But
the problem is the check list which they use, although they have an intention to reduce it but
it has been expanded which is difficult to manage.

The module testing is either performed by the developer himself or by the separate

developers, depending upon the requirements from the customer. Inspection is performed
independently but typically by the person who is involved in the development of software.
For each change in the module they do re inspection. In some projects they also carried out
inspection of module tests and validation tests depending upon the requirements of project.

Unit testing is performed by the help of a tool called Cantata. It has many scripts which

configures everything and makes an automated report about them and if any part is missed
some additional test cases are made. In unit test level, they focus on functionality and try to
get complete coverage. After checking the main functionality they test the borders by

D-11

boundary value and parameters. There are pros and cons of having independent unit testing.
There could be a loss of information while carrying it out independently, on the other hand,
the developer doing the unit testing may miss some of his defects. Mostly, the developer also
do unit testing as well but they have independent inspection of the code to avoid the cons.

At unit level testing they don’t have any specific design for the tests. They use T95

framework for test design and write test sequences in C++ but those are more or less
sequential activities and checks to perform during testing. GSWS required them to have
inspection of the module tests.

They are not good at doing integration testing. They don’t have formal integration testing

rather they try to cover integration testing at the validation level where they test software and
hardware together. But some form of integration of software module testing is performed by
the software development team which is not formal. The validation department requires that
the software must be fully module tested and code reviewed by the software department
before sending it to them.

They mainly produce hardware platforms and along with it they deliver software. The

size of the software varies, it can be small from just a boot up application to a full software
application. It differs from project to project but is always related to hardware. Previously all
software activities in flight software development were performed in the software
development section. Then they had two validation teams one for hardware validation and
the other for software validation and often they find the same problems with same test but
they discover them separately. Since the hardware team need software to test their hardware
and vice versa. They are making validation testing by testing the software and hardware
together more and more.

Previously, they ran the same test cases for software and hardware, they are now trying to

work together in one test specification and tank them together so they don’t have to
implement the same tests twice. In the customer requirements the hardware and software
requirements are not separated so they see them as a function when they test them. The
validation department is taking more and more responsibility to save time because
previously the same type of tests were performed by both departments, separately. In the
latest space craft management unit projects, they had low level hardware drivers and there
was a tight connection between the drivers and the hardware therefore they think it is better
to conduct the testing on drivers together with hardware.

They have templates for documents which are traced to ECSS so if they use that template

without making any changes, they would be compliant to ECCS-E-40. If they make any
changes they have a trace to verify and evaluate if the changes made them non complaint to
it. These templates are used in different projects and improvements are made in them
continuously. They built similar kind of systems, so they try to reuse the system
requirements and technical specifications. Requirement Baseline is provided by the customer
so they try to match them with system requirements and technical specification by making
small changes. Sometimes they have to rewrite the technical specifications.

After the Ariane5 accident, in which they reused some part of the code from Ariane4,

ESA and other companies became very skeptical about reusing code. Although, it is not
forbidden but is not encouraged either. ECSS requires too much work to reuse things. It
requires them to do some extra tasks which can become more expensive and at times they
end up doing more work to make analysis and justify it. They have to justify why they are
reusing it and explain how it works.

Often the software they are testing is not the final application and is usually more or less a

driver for hardware so they needed to add test application and guess how the customer will

D-12

use it. They have started to use more simulations but normally they have in-house prototypes
of breadboard for hardware testing. In most cases their validation testing is the acceptance
testing. The validation team always validates a complete software. Sometimes they get part
of it to check the functionality but the official testing is always done for complete software.
For calibration, they make sure they execute the software on real hardware which has gone
through a level of level of verification. They also have traceability from requirements to
design, to test cases and to customer requirements to ensure that they have full coverage.

They use a number of tools like Splint for static analysis, FlexeLint for checking coding
standards and Cantata for unit testing and checking structural coverage. They have structural
coverage on unit testing level but not at the validation level. The equipment also depends
upon projects and it varies. They have parallel development of testing environment and
actual software. Testing of the software tools and testing equipments are less formal than the
validation of the actual software. For test equipment they don’t trace the requirement
because it is an internal project nor do they have test scripts. They perform inspection of the
software used by the instruments but they don’t have any module test or review test. COTS
are also not formally tested.

The validation team has very less involvement in the requirements phase.

D.2.2.2 Theme 2: efficiency of Verification Activities

They find defects which could have been found earlier. Sometimes at validation level
they find defects which should have been found at the unit level. It also happens the other
way around that at code inspection and unit testing they find defects which could have been
detected by validation tests but weren’t in their test specification. Code inspection is a
manual task and is dependent upon the engineers and usually they have different engineers
doing code inspection and unit testing. It is very tiring and if they do it over and over then
they start to miss things. They had problems with unit testing because they focused highly on
the coverage figures. The problem is that people are looking at what code does instead of
looking at what the code should do and test that. Other reasons for faults slip through are the
tight schedules in the project. In such circumstances they move away from optimal ways of
doing things and rush through them. They have had problems with the in house tools and
sometimes it requires too much effort to improve such tools and methodologies which are
project driven. They use the same environments and tools for other projects as well but
always with certain changes so the main components are the same but there are always
differences and those differences take a lot of time.

They are lacking in metrics which are easy to use and follow up and they think it is hard

to get them. Another problem is they don’t have statistics to use in metrics and they are not
good at following up afterwards to see what method was good or bad. They haven’t
measured the efficiency of different VA’s and they don’t even measure the number of
defects found at different levels. They are not good at measuring the results of what they are
doing why they are doing it. They don’t have a formal list which says these categories of
faults should be detected at this stage and so on. One opinion is that code inspection is more
efficient that module testing but they don’t have exact scientific figures to back that up.

Code inspection is one of the most valuable things at RUAG, but the downside of code

inspection is the dependence upon the person doing it. It is different when an experienced
employee is doing it or when a consultant is doing it. During code inspection they find a lot
of issues like maintenance issues, bad choices of algorithms, implementation inefficiencies,
these are the kind of issues which they don’t find in module testing or validation testing
where they check the input and output result. They think that they are very good at code
inspection and they even get better in it. They have well established check lists which keep

D-13

on improving in every project. They keep on looking for automated tools to help them in the
manual inspection.

Reviews of requirements and design are cheap as it only takes few days and a number of
engineers. People have less interest in module testing compared to writing code. They don’t
use any tool for logging defects during inspection or module testing, they use sheets to
record them and make a note where the defect was found and remove them. But at validation
level or after the delivery of the first version to the customer they generate proper SPRs and
NCRs and use database tool, because it is carried out by another team who need to
communicate with the design team.

They classify problems on the basis of criticality which is defined in their development

plan. They also classify them according to artifacts in which they were found like
requirements, coding and design. They don’t have the support for dividing code into
criticality levels.

D.2.2.3 Theme 3: ECSS Standards

ESA reviews their documents to ensure they are following ECSS standards. For each

major review in the lifecycle, they review documents like requirements, design, interfaces,
etc. After reviewing them they send Reviews Items Discrepancy (RIDs) based upon them.
RIDs are discussed in their meetings, arranged at RUAG to check whether a particular RID
need to be changed or it is not clear.

D.2.2.3.1 Positive effects of ECSS standards:

The major positive effect is the standardization itself. It is required in business area like

space, to improve their way of working and to have cooperation with different countries as
well. If they don’t have the standards, this can create lot of problems in the cooperation. It
helps in understanding each others way of working.

ECSS is a European wide standard and all their customers are aware of it. When they

make proposals on new projects, it is often the same standard every time so it makes easier
for them to reuse their own internal standards and processes since they know the
requirements from customers about the development process. They don’t have to write their
development plans from the scratch and don’t have to spend a lot of time explaining their
internal processes.

Everyone has to follow the same design. It gives the idea what has to be in the

documents, which data to provide and which task has to be performed at each stage. ECSS
keep all the stakeholders on their toes. When they follow the standards and the templates in
the standard then it is easier to show the customers that they have included all the necessary
information and everyone knows a place where to look for that information. Even though
they may not agree with few things in the standards but it is better to follow it.

D.2.2.3.2 Negative effects of ECSS standards:

Although ECSS creates common understanding among different stakeholders but

requirements of it can be interpreted differently by different people especially when the
people have different cultural background like Italian, Swedes, French, and Germans etc.
Since the standards are considered as consensus among different stakeholders and they must
leave room for interpretation because if the standard would decide everything then it would
be too rigid for innovation. It is very person dependant and everyone can interpret it

D-14

differently so they have issues about how these standards should be interpreted while writing
development plans and tailoring those standards. This opens up a number of new discussions
with the customers.

ECSS does not provide enough support for iterative development. They are more or less

forced to follow waterfall model with costly reviews and lot of overheads. It is very difficult
to work iteratively and in small integration steps because ECSS focuses on the external
review of customer and if they divide their software project into 5 integration steps then they
are forced to have 5 or 6 reviews for each increment. It is an overhead in each project and is
not feasible for each and every increment. Incremental development is not impossible with
ECSS but it is not supported by ECSS.

They think that agile approaches are quite hard to be introduced with ECSS, because of

the reviews required by ESA for each increment. ECSS standard doesn’t support model
based software engineering. The C version of the standards, according to ESA doesn’t forbid
model based software engineering anymore. It doesn’t forbid the use of model based
software engineering but it doesn’t promote it either.

ECSS standards ask for detailed documents and then they have to prove it as well e.g. in

case of unit testing they are very specific how they should do it. They require RUAG to have
a plans, reports, test specifications, test execution in a certain way and then also prove it that
all is done according to standards. Testers, project manager and quality assurance manager
have to agree that they are only doing a certain activity because they are forced to do this by
ECSS so they may not achieve the desired results from that activity and by using some other
activity they can have better results.

Next version of the ECSS standard, version C, is on public review now it seems that it is

taking a wrong turn because it requires more detailed documentation in a specific way. There
are even more requirements on how to do things in a certain way. They are forced to do
things in specific ways and prove every step they take. In this way, ECSS hampers
innovation and good ways of doing things.

ECSS is sometimes a bit fussy and unclear to be interpreted properly. It requires doing a lot
of things which are not clear. In case of code inspection there are only 2 or 3 requirements
about them which don’t help much. They need to be broken down for clarity. People writing
the standards should think about what they need to standardize and why this is? They are
aware that software starts by writing requirements and then a design is made that will fulfill
these requirements. If we look at the standards, it is basically a design and ECSS standard is
a solution to something. They haven’t thought of the requirements first.

At RUAG, they are trying to follow ECSS standards in every new document and try to

follow it exactly to avoid the amount of questions by customer. Each document explains how
they will work and has special tables telling where to find the information or deviation from
the standards. They will now try to adopt the new C standard system because customers will
use that in future so they sent some comments to ESA about this but have not received any
response from them. But they are looking for more effective way of being complaint with
ECSS so that they could have a good argumentation for that according to standard to show
that they fulfill the standard even they work in their own way. They try to limit them to few
details and send in their statements of compliance in the proposal.

The validation department needs to learn more about ECSS standards and see how it can

affect them for upcoming flight software projects. After the Galileo project they have
realized that they can increase quality by following the standards. They need to educate
themselves more about ECSS standards. They can also realize what customer requirements
effectively by using the standards along with customer requirements.

D-15

It would be good if everyone knows at least the basics of the standards and then object

leaders who are responsible for the overall activities and create most of the documents can
fully aware of the standards. If there is a manager who has explained everything to
developers and testers and shielded them from standards then they may not need to have full
knowledge about them. Some basic knowledge is enough. For large projects the object
leaders might not have enough time for all the hardware and software standards so they
might need one person in software who should know about what is expected in the
documents by ECSS standards.

Tailoring can be very helpful for solving problems. RUAG is at the lowest level of the

customer-supplier chain [17] and often have 3 or 4 levels of customers above them. Mostly
they can’t really tailor standards because they get tailored standards from their customers.
The customers usually add few tweaks to ECSS and they can’t do any tailoring from that. If
they were at the top level prime it would have been possible for them to tailor ECSS but in
most of their projects they have ESA on the top which have their own opinions about
tailoring.

Sometimes they are allowed to do things which are not in the ECSS and that can be in the

form of tailoring of any particular standard. But it is very much up to the customer.
Especially if the prime is confident in supplier’s work and has worked with them before and
if they have a good relationship.

ECSS promote reusability but they made it almost impossible. There are certain

requirements concerning reusability about considering reusing already their own existing
software or commercial-of-the-shelf. It is not enough that the reused software has been fully
verified and validated in other projects. They have to make sure that it is fully verified it in
the new project as well. They have to show how they are going to remedy this, fix this and
how would they do the re-verification.

Every new mission has its own metric limits which are imposed by the standards. They

have to show that the development standard of the reused software is compatible with the
current development standard. There is a lot of work in reusing software and it is easy to say
that we are not reusing software.

D.2.2.3.3 Galileo Software Standards (GSWS)

GSWS started as a tailoring of ECSS, it has many similarities of ECSS. In a way it is

easier to follow because it is clearer. It has taken out some of the fussiness but it is strict as it
has added number of details on how to do things or what to do. It requires more but is easier
to follow. New ECSS standard will be more like the Galileo software standards. They have
taken requirements from Galileo and put them in the new version of ECSS. They are more
precise in what it requires. Following GSWS made them more compliant to ECSS.

It is strict on some source code metrics but better in clarity. Some of the requirements are

tough and not worthwhile and it is not open to alternative approaches. Some of the
requirements don’t improve the quality as it requires independent module testing.

GSWS has tailored different irrelevant levels that ECSS didn’t have and has imposed the

tailorization. At RUAG, they would like to use ECSS standards with some interpretations of
GSWS. They have used interpretation of GSWS to interpret some requirements of ECSS to
make it easier to understand and implement.

.

D-16

D.2.2.4 Theme 4: Software Development Methodology

They have hard toll gates, like requirements review, architecture design review, detail

design review (DDR) by their customers. It means that they are not allowed to do any
activity which follows that review prior to it. Since they have strict toll gates like DDR all
the design should be finished regardless if they are implementing them incrementally.

They are required to use waterfall method, so they start by writing the requirements and

conduct reviews along with customers on the requirements. Once the requirements are
finalized, the basic architecture of the software is designed after which they are allowed to
start coding. They have early reviews like Software Requirement Review (SRR),
Preliminary Design Review (PDR) where requirements are reviewed and they make sure if
the requirements are ready.

They wanted to start coding before all the requirements are finished so they have

introduced iterative aspect in waterfall development and named it as Integration-driven
Development (IDD). The motivation is to built software faster, so they take one part of the
software and more of less complete it and start testing it. IDD is introduced to have more
interaction between different teams. Before IDD the time span between requirements
specification, design, implementation and testing was very large and there was loss of
information because of that.

D.2.3 Web-based Questionnaire Analysis Results

D.2.3.1 Introduction

An online survey has been conducted at RUAG to get a certain level of understanding

about the V&V activities which they perform. The total respondents were 19, having varying
level of expertise in terms of experience, age, areas of software development and testing and
projects in which they worked at RUAG.

D.2.3.2 Areas of software development

The questionnaire results show that the percentage of respondents involved in code
review, requirements review and unit testing are 58%, 53% and 53% respectively.47% of the
respondents have been involved in architectural design, validation testing and design review.
42% in implementation, tool development and software requirements engineering where as
37% in detail design and integration testing. 26% has been involved in management where as
16% in acceptance testing, project management, quality assurance and system requirements
engineering. Only 10% and 5% have been involved in development support and proposals
respectively.

The above data shows that most of the people have been involved in the static verification

activities.

D.2.3.3 SWD methodology

31% of respondents said they use integration driven development where as only 5% said
its waterfall and the same percentage said its test driven development. 58% of the
respondents didn’t have clear idea about this, either they didn’t understand the question or
they didn’t know about it.

D-17

D.2.3.4 Knowledge about ECSS standards

37% of the respondents knew the contents and how it affects their software development
activities where as 21% knew in detail what it prescribes and its consequences for their
software development. 31% knew it roughly. 5% were an expert who actively worked and
implemented it whereas the other same percentage has never heard about it.

D.2.3.5 Degree to which ECSS affect their software development

activities

42 % of the respondents were of the opinion that, the degree to which ECSS effect their
software development activities is high, 31% said its very high where as only 21 % and 5%
said its low and very low, respectively.

D.2.3.6 Effect of ECSS on the quality of software

21% didn’t answer about the effects of ECSS on the quality of software. However,
amongst the remaining respondents 47% said its mostly positive and the same percentage
said its somewhat positive. Only 6% were of the opinion that its somewhat negative.

D.2.3.7 Effect of ECSS on the efficiency of software development

15% of the respondents didn’t answer about the effect of ECSS on the efficiency
of software development but 87% of the remaining respondents said that it is somewhat
negative. 6% said that it is somewhat positive and the same percentage said that it is
negative.

D.2.3.8 Effectiveness of verification activities

� Requirements review - 21% are not involved in it, the remaining 79% opined

that it is effective

� Design review - 32% are not involved in it, 47% says its effective and only
21% thinks its ineffective

� Code review - 21% are not involved in it, 73% thinks its effective and only 6%
thinks its ineffective

� Unit Testing - 21% are not involved in it, 68% thinks its effective and only 11%
thinks its ineffective

� Integration Testing - 47% are not involved in it, 32% thinks its effective and
21% thinks its ineffective

� System Testing - 47% are not involved in it, the same percentage thinks its
effective and only 6% thinks its ineffective

� Validation Testing - 21% are not involved in it, 68% thinks its effective and only
11% thinks its ineffective

� Acceptance Testing - 53% are not involved in it, 10% thinks its effective and
37% thinks its ineffective

D-18

D.2.3.9 Effort which the verification activities require

� Requirements review - 21% are not involved in it, 42% said that it requires high
effort where as 37% said that it requires low effort

� Design review - 32% are not involved in it, 31% said that it requires high effort
and 37% said that it requires low effort

� Code review - 21% are not involved in it, 58% said that it requires high effort
and only 21% said that it requires low effort

� Unit Testing - 21% are not involved in it, 68% thinks that it requires high effort
and only 11% it requires low effort

� Integration Testing - 47% are not involved in it, 37% thinks that it requires high
effort and 16% thinks requires low effort

� System Testing - 47% are not involved in it, the same percentage thinks it
requires high effort and only 6% thinks requires low effort

� Validation Testing - 21% are not involved in it, 68% thinks it requires high
effort and only 11% thinks it requires low effort

� Acceptance Testing - 58% are not involved in it, 26% thinks it requires high
effort and 16% thinks it requires low effort

D.2.3.10 Change in VA, if ECSS is not relevant

� Requirements review - 21% are not involved in it, 42% won’t change the effort
on it where as 32% said they would like to put more effort on it where as only
5% said they would put less effort on it

� Design review - 31% are not involved in it, 37% won’t change the effort on it
and , 16% would put more effort on it and the same percentage would put less
effort on it.

� Code review - 21% are not involved in it, 53% won’t change the effort on it and
only 26% would put less effort on it.

� Unit Testing - 21% are not involved in it, 42% would put less effort on it, 31%
won’t change the effort on it and 6% would put more effort

� Integration Testing - 36% are not involved in it, 42% would put more effort and
16% won’t change the effort and 6% would put less effort

� System Testing - 47% are not involved in it, 26% won’t change the effort and
21% would put less effort and 6% would put more effort

� Validation Testing - 21% are not involved in it, 37% won’t change the effort,
32% would put less effort and 10% would put more effort

D-19

� Acceptance Testing - 63% are not involved in it, and 16% won’t change the
effort, 10.5% would put less effort and the same percentage would not do this at
all

D.2.3.11 Percentage of V&V activities of the total development

costs

10% of the respondents didn’t answer this, amongst the remaining people 41% said the
cost should be 70%, 29% said the cost should be 60%, 12% said it should be 40%, 5.8 %
said that it should be 30%, the same percentage said it should be 100% and 80%

D.2.3.12 Knowledge about ECSS standards

I have never heard of it - 1
I know roughly what it is about – 2
I know its contents and how it affects the SWD activities - 3
I know it detail what it prescribes and its consequences for SWD – 4
I am an ECSS expert and have worked actively in implementing and adopting it – 5

19 people answered

(1*1) + (6*2) + (7*3) + (4*4) + (1*5)/ 19= 2.9

Degree to which ECSS affect the SWD

Very high – 4
High – 3
Low – 2
Very low – 1

19 people answered

(1*1) + (3*2) + (8*3) + (6*4)/19 = 2.9

Degree to which ECSS affect the quality of SW

Mostly positive – 4
Somewhat Positive – 3
Somewhat Negative – 2
Mostly negative - 1

15 people answered

(7*4) + (7*3) + (1*2) + (0*1) /15 =3.4

D.2.3.13 Effect of ECSS on the efficiency of software development

Mostly positive – 4
Somewhat Positive – 3
Somewhat Negative – 2
Mostly negative - 1

16 people answered

D-20

(0*4) + (1*3) + (14*2) + (1*1) /16 = 2

Effectiveness of verification activities

Very effective- 4
Effective-3
Ineffective-2
Very Ineffective-1

Requirements Review
4 people are not involved in requirements review

(1*4) + (14*3) + (0*2) + (0*1) /15=3.1

Design review

6 people are not involved in design review

(1*4) + (8*3) + (4*2) + (0*1) /13=2.8

Code review
4 people are not involved in code review

(7*4) + (7*3) + (1*2) + (0*1)/15=3.4

Unit testing
4 people are not involved in unit testing

(3*4) + (10*3) + (2*2) + (0*1)/15=3.1

Integration testing

9 people are not involved in integration testing

(2*4) + (4*3) + (3*2) + (1*1)/10=2.7

System testing
9 people are not involved in system testing

(2*4) + (7*3) + (1*2) + (0*1)/10=3.1

Validation testing

4 people are not involved in validation testing

(7*4) + (6*3) + (2*2) + (0*1)/15=3.3

Acceptance testing

10 people are not involved in acceptance testing

(0*4) + (2*3) + (7*2) + (0*1)/9=2.2

Effort which the verification activities require
Very high effort- 4
High effort -3
Low effort-2
Very low effort-1

Requirements Review

4 people are not involved in requirements review

(3*4) + (5*3) + (6*2) + (1*1)/15=2.6

Design review
6 people are not involved in design review

(1*4) + (5*3) + (6*2) + (1*1) /13=2.4

Code review

D-21

4 people are not involved in code review

(1*4) + (10*3) + (4*2) + (0*1)/15=2.8

 Unit testing
4 people are not involved in unit testing

(5*4) + (8*3) + (2*2) + (0*1)/15=3.2

Integration testing

9 people are not involved in integration testing

(2*4) + (5*3) + (3*2) + (0*1)/10=2.9

System testing
9 people are not involved in system testing

(7*4) + (2*3) + (1*2) + (0*1)/10=3.6

Validation testing
4 people are not involved in validation testing

(13*4) + (2*3) + (0*2) + (0*1)/15=3.8

Acceptance testing

11 people are not involved in acceptance testing

(1*4) + (4*3) + (3*2) + (0*1)/8=2.7

D.2.3.14 Change in VA, if ECSS is not relevant

Would put more effort on - 4
No change - 3
Would put less effort on - 2
Would not do activity at all - 1

Requirements review

 4people are not involved in requirements review

(6*4) + (8*3) + (1*2) + (0*1)/15=3.3

Design review
6 people are not involved in design review

(3*4) + (7*3) + (3*2) + (0*1) /13=3

Code review
4 people are not involved in code review

(0*4) + (10*3) + (5*2) + (0*1)/15=2.6

Unit testing

 4people are not involved in unit testing

(1*4) + (6*3) + (8*2) + (0*1)/15=2.5

Integration testing
 7people are not involved in integration testing

(8*4) + (3*3) + (1*2) + (0*1)/12=3.6

System testing
9 people are not involved in system testing

(1*4) + (5*3) + (4*2) + (0*1)/10=2.7

D-22

Validation testing

4 people are not involved in validation testing

(2*4) + (7*3) + (6*2) + (0*1)/15=2.7

Acceptance testing
12 people are not involved in acceptance testing

(0*4) + (3*3) + (2*2) + (2*1)/7=2.1

E-1

Appendix E

This appendix contains discussion about the key findings, challenges and
motivation for the solutions

E-2

Discussion

In this study, we identified challenges faced by two space companies during their V&V process.

A triangulated research process has been used to for the validation of the results.

The results collected from web-based questionnaire are compared to understand differences

between the work processes and to identify the factors causing those differences. The questionnaire
was divided into four themes to cover different aspects of the study. Theme 1 is related to ECSS
standards. Questions were asked about knowledge, effects of ECSS on software development, effects
of ECSS on software Quality and effects of ECSS on the Efficiency of software development.
Following figure 13 presents the comparison between RUAG and SSC over Theme 1, with important
factors on X-axis and weighted average on Y-axis. See Appendix C and D, for further information
about weighted average.

0

0.5

1

1.5

2

2.5

3

3.5

Knowledge Effects on

SWD

Effects on SW

Quality

Effects on

Efficiency of

SWD

SSC

RUAG

Figure 13: Comparison between SSC and RUAG over ECSS Standards

The above graph shows that ECSS knowledge distribution within the organization can affect the

results of other three factors. Both SSC and RUAG are of the opinion that ECSS standards affect their
software development process positively and it improves the quality of the software as well. But it
was interesting to find out that both the case companies are of the opinion that ECSS standard has a
negative effect on the efficiency of their software development. The Challenge-cause analysis shows
that this negative effect is because of difference in interpretation of ECSS and documenting
requirements for compliance proofs. ECSS standards are general in nature and even within ESA they
are interpreted differently among different reviewers. Tailoring of ECSS standards can be a solution to
cope with the challenge of documenting proofs for compliance but sometimes it is very hard for the
organization to perform appropriate tailoring due to different reasons. For example in the case of SSC,
due to inappropriate knowledge distribution about ECSS, they are unclear how to tailor ECSS
standards. RUAG on the other hand is at a lower level of recursive customer-supplier relationship [17]
hierarchy and get tailored requirements about ECSS from their customers. As results, they have very
little chance to tailor ECSS according to their needs.

Theme 2 of the questionnaire was related to the effectiveness VAs. This was to judge the

effectiveness of different VAs on this scale Very Ineffective –1, Ineffective – 2, Effective – 3 and
Very effective – 4. Requirement Review, Design Review, Code Review, Unit Testing, Integration
Testing, System Testing, Validation Testing and Acceptance Testing were judged on the above
mentioned scale by both the case companies. Following figure 14 presents the comparison between
RUAG and SSC over Theme 2, with VAs on X-axis and weighted average on Y-axis. See Appendix C
and D, for further information about weighted average.

E-3

Figure 14 Comparison b/w SSC and RUAG over effectiveness of VAs

For RUAG the most effective VA’s are ‘code review’ and ‘validation testing’ whereas for SSC

‘unit testing’ and ‘integration testing’, are more effective than other VA’s. The least effective
according to RUAG is acceptance testing whereas for SSC it is code review.

Theme 3 of the questionnaire was related to the effort required for VAs. This was to determine the

effort required for different VAs on the scale Very low effort –1, Low effort – 2, High effort – 3 and
Very high effort – 4. Requirement Review, Design Review, Code Review, Unit Testing, Integration
Testing, System Testing, Validation Testing and Acceptance Testing were judged on the above
mentioned scale by both the case companies. Following figure 15 presents the comparison between
RUAG and SSC over Theme 3, with VAs on X-axis and weighted average on Y-axis. See Appendix C
and D, for further information about weighted average.

Figure 15 Comparison b/w SSC and RUAG over effort required for VAs

For RUAG ‘validation testing’ and ‘system testing’ requires more effort compared to other VA’s

whereas for SSC it is system testing. Both the companies think that ‘requirements review’ and ‘design
review’ requires less effort compared to other activities.

Theme 4 of the questionnaire was related to the Change in VAs if ECSS is not relevant. It identified

the change in different VAs on the scale; would not do activity at all –1, Would put less effort on –2,
No Change –3 and Would put more effort on – 4. Requirement Review, Design Review, Code
Review, Unit Testing, Integration Testing, System Testing, Validation Testing and Acceptance
Testing were judged on the above mentioned scale by both the case companies. Following figure 16

0
0.5

1
1.5

2
2.5

3
3.5

4

R
e

q
u

ir
e

m
e

n
t

R
e

v
ie

w

D
e

si
g

n

R
e

v
ie

w

C
o

d
e

 R
e

v
ie

w

U
n

it
 T

e
st

in
g

In
te

g
ra

ti
o

n

T
e

st
in

g

S
y

st
e

m

T
e

st
in

g

V
a

li
d

a
ti

o
n

T
e

st
in

g

A
cc

e
p

ta
n

ce

T
e

st
in

g

SSC

RUAG

0
0.5

1
1.5

2
2.5

3
3.5

4

R
e

q
u

ir
e

m
e

n
t

R
e

v
ie

w

D
e

si
g

n

R
e

v
ie

w

C
o

d
e

 R
e

v
ie

w

U
n

it
 T

e
st

in
g

In
te

g
ra

ti
o

n

T
e

st
in

g

S
y

st
e

m

T
e

st
in

g

V
a

li
d

a
ti

o
n

T
e

st
in

g

A
cc

e
p

ta
n

ce

T
e

st
in

g

SSC

RUAG

E-4

presents the comparison between RUAG and SSC over Theme 4, with VAs on X-axis and weighted
average on Y-axis. See Appendix C and D, for further information about weighted average.

Figure 16 Comparison b/w SSC and RUAG over change in VAs

RUAG would like to put effort on ‘integration testing’ and less effort on ‘acceptance testing’

whereas SSC would like to put more effort on ‘unit testing’ and ‘requirements review’ and less effort
on ‘integration testing’.

By the help of challenge-cause analysis we concluded that both the companies are facing problems

due to three main causes; ECSS Standards, Faults-slip-through among different stages and
Inappropriate selection of cost-effective VAs. Challenges regarding ECSS and the recommendation
solutions are presented above in the ‘Paper’ section of this thesis. Current Reality Tree (CRT) helped
us to identify the main causes of the challenges and from the CRTs it is clear the both companies are
facing problems due to inappropriate selection of VAs at different stages of software development life
cycle. For example, at SSC, the developer himself performs unit testing of his code which can cause
the fault slippage to the next stage. On the other hand at RUAG, code inspection is performed by an
independent person at unit level to ensure full structural coverage, however they are not focusing on
integration testing properly. Both the companies are facing problems in identifying the appropriate
VAs at different stages. So there is a need for a strategy to select appropriate VAs.

Both companies wants to have simple measurements so they may evaluate the efficiency of their

VAs, the improvement potential they can have and a method by which they can have a combination of
VAs to ensure that defects are covered. Lars-Ola et al. [15] proposed a method at Ericsson for faults-
slip-through measurements which has three steps, in the first step a strategy is developed about what
should be tested at which phase. This will have a direct mapping about what types of faults a certain
phase should cover. In the second step, the average cost of finding defects in various stages is
determined; this can be obtained through the reporting system or by expert judgments. In the third
step, an improvement potential is determined by calculating the difference between the costs of
finding defects at the stage they were found to the cost of finding defects from the stage where they
slipped through. The approach described the definitions and instructions about how to apply and
follow up on the measurements. But the pre requisite for applying this method is a strategy and
classification of defects and measurements about the cost of finding defects at various stages.

Software architectures based on the concept of design diversity are widely used in industry. VAs

differ in efficacy of finding defects so their different combination can lead to an optimal verification
process. Littlewood et al used this idea to convince practitioners for using combination of different
approaches for fault detection as the diversity of defect finding approaches results in high quality
software [1]. Koster further enriched this idea by combining it with Modern Portfolio Theory [3]. He
investigated three factors which are important for the interplay between different techniques i.e.
effectiveness level, resource allocation and variability of effectiveness. Experiments conducted by
Myers, Selby and Murray et al. proved that combination of different VAs such as structural testing,
functional testing and code review is much more effective than using them alone [4, 5,6]. Freimut et
al introduced a customizable defect classification strategy based on domain specific knowledge of
developers and software engineering knowledge of measurement experts [7]. The strategy is

0
0.5

1
1.5

2
2.5

3
3.5

4

R
e

q
u

ir
e

m
e

n
t

R
e

v
ie

w

D
e

si
g

n

R
e

v
ie

w

C
o

d
e

 R
e

v
ie

w

U
n

it
 T

e
st

in
g

In
te

g
ra

ti
o

n

T
e

st
in

g

S
y

st
e

m

T
e

st
in

g

V
a

li
d

a
ti

o
n

T
e

st
in

g

A
cc

e
p

ta
n

ce

T
e

st
in

g

SSC

RUAG

E-5

developed by keeping in view the requirements of embedded systems only. It provides a mechanism
for classifying the defects but no guidelines are given for selecting particular VA or combination of
VAs for this classification. In [8], Nakamura et al explained an approach for identifying and
classifying domain specific defects by emphasizing on inspection and change history. However, the
prerequisites such as availability of source code, availability of analysts and availability of verifiers
can make this approach non practical for small and medium sized companies due to the cost
associated with it. Wagner summarized the state-of-the-art for defining domain specific defect
classification approaches and discussed the factors affecting the industry usage of these approaches
[8]. According to him, domain specific artefacts, defect classifications, defect classification
di9mensions and their connection to quality models must be defined in advance, in order to achieve
efficient VAs.

There are some strategies focusing on the selection of combination of VAs. Baret el al. [25] used
the idea of mapping matrix for optimizing test process. The matrix is filled with the VAs and defects
types in rows are columns, respectively. If any VA has the ability to detect a specific defect type, then
the cell representing that VA in row and defect type in column is marked with “X”. Wagner’s model
of quality economics presents a cost versus benefit analysis using more detailed metrics and equations
[9, 26]. This model requires lot of initial data and cannot be a candidate strategy for the selection of
cost-effective VAs, for the case companies. Murnane et al [27], presented a method for the selection
of test cases by tailoring Black box testing. The limitation of this method is that it only checks one
aspect of V&V process. Combination framework by Bradbury et al [28] focuses on mutation for
defects and automated VAs and does not provide any guideline for the selection of VAs. The strategy
presented by Strooper’s et al [10] for the selection of cost-effective VAs is a candidate solution for
this challenge. It aims at selecting and evaluating different combinations of VAs by focusing on
maximizing completeness and minimizing effort thus reducing cost and enhancing the efficiency, in
four steps. Systematic way of applying empirical information makes this strategy a competitive
approach for our study.

Strategy presented by Strooper’s et al [10] requires a calculation of improvement potential at the

end of each iteration. FST [15] has been used effectively in telecom industry for the calculation of
improvement potential for different stages of verification and validation. FST can be used effectively
at the start of each iteration to calculate improvement potential for that stage. After applying the
selected combination VAs identified in the step 2 of Strooper’s et al strategy, improvement potential is
again calculated. Both improvement potentials are compared to validate whether the selected
combination worked as expected or not. Following figure 17 further explains this idea. The stop
means that particular combination for which ip-2 has been calculated is effective and can be used at
this particular stage. As the Strooper’s et al strategy is iterative in nature so same process can be
repeated for the next iteration until all the combinations have been applied or a tradeoff has been
suggested by the management.

Start

Compare ip-1 and ip-2

Calculate improvement
potential (ip-1) using FST

Apply selected combination
of Strooper's et al Model

Calculate improvement
potential (ip-2) using FST

ip-2 >= ip-1 Stop Y N

Figure 17: Strategy for using FST and Strooper’s et al Model

F-1

Appendix F

This appendix sets direction to the future work, identified during the study

F-2

Future Work

Based on this study we have identified several potential ideas to evaluate in reaching the

goal for having cost efficient software projects in the space industry.

There are three different activities which are followed to get in compliance with the

standards like ECSS. They are differentiated as the activities which:

� add to the actual quality of the software (eliminates existing or avoids the
introduction of future defects),

� add to the confidence in the software,

� does neither of the above and only imposes an administrative cost to the process
itself

The idea is to increase the use of VAs for the first type, adapt activities of the second type

to the level of confidence of the customers, and reduce the costs for the third type to
minimum. Our intention is to evaluate and refine this ‘Cost of Compliance’ model into a
framework that can be used for V&V optimization. Also we could combine this model with
a selection framework for V&V activities as the one presented in [10].

1

References:

1. B. Littlewood, P. Popov, L. Strigini and N. Shryane. (2000) “Modelling the effects of
combining diverse software fault removal techniques”. IEEE Transactions on Software

Engineering, vol. 26(12). pp. 1157-1167. IEEE Computer Society, Washington, DC.

2. M. Jones, C. Mazza, U. K. Mortensen, and A. Scheffer, (1997) “1977 – 1997: Twenty
Years of Software Engineering Standardization in ESA”, Bulletin Nr.90, ESA
Publication Division, Noordwijk, the Netherlands.

3. K. Koster, “Using Portfolio Theory for Better and More Consistent Quality”, in
Proceedings of The International Symposium on Software Testing and Analysis

(London, United Kingdom, 9 – 12 July 2007), ISSTA’07.

4. G. J. Myers. “A controlled experiment in program, testing and code walkthroughs
inspections”. Communications of the ACM, vol. 21/9, September 1978, ACM, New
York, NY, USA.

5. R. W. Selby. “Combining software testing strategies: An empirical evaluation”, in
Proceedings of the Workshop on Software Testing (Banff, Canada, July 1986), IEEE
Computer Society, Washington, DC. USA.

6. M. Wood, M. Roper, A. Brooks and J. Miller. “Comparing and combining software
defect detection techniques: a replicated empirical study”, in Proceedings of 6th

European conference held jointly with the 5th ACM SIGSOFT international symposium

on Foundations of software engineering (Zurich, Switzerland 22-25 September 1997),
ESEC ’97/FSE-5, ACM New York, NY, USA, Springer-Verlag, New York, USA.

7. B. Freimut, D. Christian and M. Ketterer. “An Industrial Case Study of Implementing
and Validating Defect Classification for Process Improvement and Quality
Management”, in Proceedings of 11th IEEE International Software Metrics

Symposium(Como, Italy, 19-22 September 2005), METRICS'05, IEEE Computer
Society, Washington, DC. USA.

8. T. Nakamura, L. Hochstein and V. R. Basili. “Identifying domain-specific defect classes
using inspections and change history”, in Proceedings of ACM/IEEE International

Symposium on Empirical Software Engineering (Rio de Janeiro, Brazil, 21-22

September 2006), ISESE '06, ACM New York, NY, USA.

9. S. Wagner. “Defect Classification and Defect Types Revisited”, in Proceedings of

International Workshop on Defects in Large Software Systems (Washington, USA, July

2008), DEFECTS’08, ACM New York, NY, USA.

10. M. A. Wojcicki and P. Strooper, “An Iterative Empirical Strategy for the Systematic
Selection of a Combination of Verification and Validation Technologies”, in
Proceedings of 29th International Conference on Software Engineering (Minneapols,

MN, USA, 20 - 26 May 2007), ICSE 2007, IEEE Computer Society, Washington, DC.
USA.

11. J. W. Creswell (2002) Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches (Second Edition), Sage Publications, London, UK.

12. C. B. Seaman (1999) “Qualitative Methods in Empirical Studies of Software
Engineering”, IEEE transactions on Software Engineering, vol 25(4), pp. 557-572. IEEE
Computer Society, Washington, DC. USA.

2

13. Swedish Space Corporation, http://www.ssc.se, (last visited: November 17, 2009).

14. European Corporation for Space Standardization, http://www.ecss.nl, (last visited:
November 17, 2009).

15. L. O. Damm (2006) “Faults-Slip-Through - A Concept for Measuring the Efficiency of
the Test Process”, Journal of Software Process: Improvement and Practice, vol 11(1), pp.
47-59. Wiley InterScience.

16. G. Bratt, E. Denney, D. Giannakopoulou, J. Frank and A. Jonsson, “Verification of
Autonomous Systems for Space Applications”, in Proceedings of IEEE Aerospace
Conference (NASA Ames Res. Centre, Moffett Field,CA, USA, 04 - 11 March 2007),
IEEE Computer Society, Washington, DC. USA.

17. ECSS Std ECSS-E-40 Part 1B, (2003) “Software product assurance”, ESA-ESTEC,
Requirements & Standards Division, Noordwijk, the Netherlands.

18. J. Asquier and B. Battrick, (2005) “The Newsletter of the European Cooperation for
Space Standardization No.8”, ESA Publication Division, Noordwijk, the Netherlands.

19. ECSS Std ECSS-Q-80B, (2003) “Software - Part 1: Principles and requirements”, ESA-
ESTEC, Requirements & Standards Division, Noordwijk, the Netherlands

20. D. Ponz and M. Spada “Three Years of ECSS Software Standards, An Appraisal and
Outlook”, in discussion of monthly Seminar OPS-G(Darmstadt, Germany, 2o January
2006), European Space Operations Centre (ESOC), Darmstadt, Germany.

21. L. Balestra “European Cooperation for Space Standardization (ECSS)”, in Proceedings

of Trilateral Safety & Mission Assurance Conference (Noordwijk, the Netherlands, 14 –

16 April 2008) TRISMAC 2008.

22. Software Development Plan (SDP) SMALL GEO, Space Division at Swedish Space
Corporation, Stockholm, Sweden

23. Software Verification and Validation Plan SMALL GEO, Space Division at Swedish
Space Corporation, Stockholm, Sweden

24. Software Development Plan (SDP) , RUAG Aerospace AB, Goteborg, Sweden

25. N. Barret, S. Martin, and C. Dislis, "Test Process Optimization: Closing the Gap in the
Defect Spectrum," In Proceedings of the International Test Conference, 1999, pp. 124-
129.

26. S. Wagner, "Software Quality Economics for Combining Defect-Detection
Techniques”, In Proceedings of the Net. Object Days 2005 Workshop on Software

Quality (WOSQ'06), 2006, pp. 69-74.
27. T. Murnane, K. Reed, and R. Hall, "Tailoring of Black-Box Testing Methods," In

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC'06),

2006, pp. 292-299.
28. J. S. Bradbury, J. R. Cordy, and J. Dingel, "An Empirical Framework for Comparing

Effectiveness of Testing and Property-Based Formal Analysis," In Proceedings of the

6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, 2005, pp. 2-5

