
A Systematic Review of Software Robustness

Ali Shahrokni & Robert Feldt

Department of Computer Science & Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden

Abstract

Context: With the increased use of software for running key functions in modern society it is
of utmost importance to understand software robustness and how to support it. Although there
have been many contributions to the field there is a lack of a coherent and summary view.

Objective: To address this issue, we have conducted a literature review in the field of robust-
ness.

Method: This review has been conducted by following guidelines for systematic literature
reviews. Systematic reviews are used to find and classify all existing and available literature in a
certain field.

Results: From 9193 initial papers found in three well-known research databases, the 144 rel-
evant papers were extracted through a multi-step filtering process with independent validation in
each step. These papers were then further analyzed and categorized based on their development
phase, domain, research, contribution and evaluation type. The results indicate that most exist-
ing results on software robustness focus on verification and validation of Commercial of the shelf
(COTS) or operating systems or propose design solutions for robustness while there is a lack of
results on how to elicit and specify robustness requirements. The research is typically solution
proposals with little to no evaluation and when there is some evaluation it is primarily done with
small, toy/academic example systems.

Conclusion: We conclude that there is a need for more software robustness research on real-
world, industrial systems and on software development phases other than testing and design, in
particular on requirements engineering.

Keywords:
Systematic review, Robustness, Software robustness

1. Introduction

As the importance and complexity of software systems increase, both software practitioners
and researchers emphasize systematic and effective development methods. A key aspect of these
methods is that they help maintain and increase the quality of the resulting software. Software
quality is a multi-faceted concept and can be conceptualized and measured using many different
quality attributes [22]. For critical software systems quality attributes dealing with dependability
and reliability take center stage [13].

Email address: {ali.shahrokni, robert.feldt}@chalmers.se (Ali Shahrokni & Robert Feldt)
Preprint submitted to Journal of Information and Software Technology March 22, 2012

Robustness is one such important quality attribute which is defined by the IEEE standard
glossary of software engineering terminology [1] as:

The degree to which a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions.

In one of our previous studies [147] we identified gaps in the state of practice for specifying
and assuring software quality. An important gap we identified was the lack of systematic ways
to specify quality attributes such as robustness in many companies. One of our initial steps to
address this gap was to search in the academic literature for ways to specify, improve and ensure
robustness. Since our informal searches found only a limited number of results we here extend
our method to a more systematic review of the existing literature on software robustness.

An obvious choice for this purpose was to follow the guidelines on conducting systematic
literature reviews presented in [90]. A systematic review goes through all available literature
regarding a specific research question or focus area and classifies the results following clear
guidelines and steps. Systematic reviews consist of three main phases: planning, conducting,
and reporting the review. Although this paper presents our findings from performing a systematic
review, to present the results in a more clear and understandable manner, we decided to adopt
some of the practices used for systematic mapping to visualize and classify the results of our
review.

In this paper we discuss the results of a systematic literature review we performed on software
robustness. The objectives of this study are to find the existing literature in the field and classify
them according to their phase focus, system focus, and quality of studies. Quality of the studies
was measured based on research contribution type (contribution facet), type of research and type,
and strength of evaluation. Since the need to conduct this study was identified in an industrial
project, an important factor for the studies were the type of evaluation performed, and whether
they were done in an industrial setting. This measure is incorporated to evaluate the usability and
validity of the studies in the industrial context.

We continue the paper by presenting related works in Section 2. Section 3 presents the
research methodology we used to achieve our objectives, together with the results from the plan-
ning and conducting phases of the review. Section 4 reports the results from performing the
review. The results are presented in a structure based on our research questions. In Section 5 we
discuss and analyze the results to identify gaps and strengths in the state of knowledge. Finally,
Section 6 gives our conclusions about the presented results and what they imply.

2. Related Work

There are no previous reviews or systematic reviews on the subject of robustness. How-
ever, there is a review in the field of quality attributes that can be mentioned here. A short but
well known review on non-functional (quality) requirements was made by Chung et al. [34].
This study discusses quality attribute from a general perspective. The paper presents different
definitions of software quality and quality requirements. It continues by presenting different
classifications of quality requirements, which leads us to the ISO 9126 standard for classifying
quality requirements. ISO 9126 divides quality requirements into main categories of functional-
ity, realiability, usability, efficiency, maintainability, and portability. The paper also discusses
different methods for specifying quality requirements. An important artifact in this regards is the
IEEE standard 830 about recommended practices for software requirements specification.

2

Another concept that needs to be discussed in this section is software robustness. IEEE
standard defines robustness as [1]:

The degree to which a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions.

However, robustness is sometimes considered a quality for achieving higher dependability in sys-
tems by non-academicers. Dependability is an ‘umbrella’, ‘integrative’ concept having multiple
attributes [99]. Formally it and its basic sub-concepts are defined as [13]:

The ability to deliver service that can justifiably be trusted in a software system.

Dependability is the integrate of these basic attributes: availability (readiness for correct ser-
vice), reliability (continuity of correct service), safety (absence of catastrophic consequences on
the user(s) and the environment), confidentiality (absence of unauthorized disclosure of infor-
mation), integrity (absence of improper system state alterations), and maintainability (ability to
undergo repairs and modifications) [13].

Avizienis et al. defines robustness as dependability with respect to erroneous input [13]. How-
ever, robustness is not considered a main attribute of dependability, but is characterized as a
secondary and specializing attribute [13]:

An example of specializing secondary attribute is robustness, i.e. dependability with
respect to external faults, that characterizes a system reaction to a specific class of
faults.

Thus, it seems that robustness can either be seen as a specializing attribute within the more
general concept of dependability, or it can be seen as an extension to the concept of dependability
to the situation of invalid input or stressful environment.

Common to several uses of the term robustness is that a system should show ‘acceptable’
behavior in spite of exceptional or unforeseen operating conditions[50]. One task of requirements
on robustness can be to specify different levels of acceptable behavior of the system. This is
related to graceful degradation of a system, which means that the system can deliver parts of its
originally intended behavior or function despite erroneous operating conditions.

3. Research Methodology

In this section we describe the methodology of a systematic review based on guidelines
from [90]. We also discuss the research questions, results from the planning and conducting
phases of the review, and the threats to validity.

Systematic reviews were first presented to software engineering by Kitchenham [89] and have
since gained an increasing popularity for conducting literature reviews in the field [155, 5, 82, 47,
48, 92]. The goal of a systematic review is “to identify, evaluate, interpret all available research
relevant to a particular research question, or topic area, or phenomenon of interest. Individual
studies contributing to a systematic review are called primary studies; a systematic review is a
form of a secondary study” [89].

Systematic reviews are conducted to:

• summarize the existing evidence about a topic

• identify gaps in current research
3

• provide background to position new research activities

This review is based on the guidelines specified in [21, 90, 89]. Parts of the structure we used
were inspired by other systematic reviews [49, 106].

As discussed in [90], during the planning phase, the researchers identify the objectives of the
review and develop a review protocol that specifies every step in detail. Then, they use the proto-
col to conduct each step of the review. The steps here are: to identify and select primary studies
in the subject, extract data from the studies, assess the quality of the studies, and synthesize data
based on the included studies. The last step is reporting where the researchers write and evaluate
the report and draw conclusions based on the results.

As discussed in the introduction, we identified the need to conduct a systematic review on
the basis of the results from [147] and the need of industry to have a better understanding of
the concept of robustness. Furthermore, most academic works about robustness focus on limited
parts and implications of the definition provided by the IEEE definition. This fact increases the
need for a systematic review to build a larger perspective over the area and categorize the existing
studies.

The next step is to identify the research questions. We needed to classify the results based on
the focus area of the studies. We also needed to consider the system focus, and assess the quality
of research and the contribution based on the type of research, contribution facet, and evaluation
of the study. These research questions are defined in Section 3.1.

As another part of the review protocol we needed to decide which databases to search, what
search terms to use, what types of studies to include, and decide how to classify and report the
results. ISI Web of Knowledge, Compendex and IEEE Xplore digital libraries were chosen. We
also used the ACM digital library to control the completeness of our selected studies.

We used the following search string within keywords, title and abstract to find results in the
databases mentioned above:

((robust OR robustness) AND software)

The search term was chosen to be very broad in order to cover the most relevant results. The
intention was to use more or fewer words depending on the number of hits, which proved to be
unnecessary since the number of hits was in a typical range for large systematic reviews.

To select relevant primary studies from the whole set of identified studies the exclusion was
made by one researcher. However, to minimize the bias the review protocol required us to use
a second person in each step to classify 20% of the studies in every selection step. The control
studies were to be selected randomly. The results from the primary and control selections were
then to be compared and in case of difference the issue needed to be addressed. The results from
this step are discussed in Section 3.5.1.

3.1. Research Questions

This paper identifies the state of knowledge and the gaps in the knowledge in Software ro-
bustness. Robustness is the main topic in our ongoing industrial project described in [147]. The
goal of the project is to identify and improve the state of art and practice of software robustness
in different phases of software development. To answer these questions we have specified the
following research questions:

RQ1 Phase focus: Which phase of the software development process is the main focus of the
existing studies?

4

RQ2 System focus: What kind of systems do these studies mainly focus on?

RQ3 Contribution/research quality: What is the quality of the research and contributions in
each study:

1. Research type: What kind of a research study is this?
2. Contribution facet: What is the form of the main contribution?
3. Evaluation: What kind of evaluation is made to evaluate the proposed contribution?

We answered these questions by conducting this systematic literature review and following
the review protocol described earlier in the paper. The results and conduct of the review are
discussed in the following sections.

3.2. Sources of Information
To have the broadest set of papers possible, we searched the most popular literature databases

in the field. These are databases used often by the researchers in the fielduse. Here is the list of
the digital databases searched in our study:

1. ISI Web of Knowledge (ISI)1

2. Compendex (CPX)2

3. IEEE Xplore (IEEE)3

4. ACM Digital Library (ACM)4: this was searched partially to validate completeness of our
selected results.

These databases cover a majority of journal and conference papers published in the field of
software engineering. Technical reports and other documents with no peer review assessment
were excluded from the study due to difficulty of assessing the results and to the large volume of
results obtained if these were to be included.

After performing the search, we removed and resolved the overlaps and duplicates from dif-
ferent sources manually. The first three databases were fully searched while only 10% of results
from ACM digital library ranked as most relevant, by the database search engine, were searched
to check the completeness of the set of results. If the results here would show a significant
number of relevant results had not already been included, the search would be expanded.

3.3. Search Criteria
To search in the databases the following search criterion was used on title, abstract and key-

words fields:

((robust OR robustness) AND software)

It is a common practice and guideline to set a start date for systematic reviews [48, 155, 5].
We set 1990 as the start date since the formal definition of robustness in software engineering
introduced by the IEEE standard glossary of Software Engineering [1] was introduced in that
year. Another reason for selecting that date is that the important work in the field published

1www.isiknowledge.com
2www.engineeringvillage2.com
3ieeexplore.ieee.org
4portal.acm.org

5

before this date, such as [76, 23], have been referenced and further developed and used in studies
published after 1990. Another criteria for the included studies was that only papers in English
were included.

Depending on the functionality provided by the databases search engines, we excluded the
results outside the field of software and computers before the studies were further processed.
This was due to the wide use of the term robustness in other unrelated fields such as mechanics
and agriculture. Since the papers that are related to both software and one of these fields are
also sorted under the software category, excluding these results would not exclude any results of
interest for this study.

Applying these criteria on the three initial databases gave 9193 non-unique results. Due to
the large number of excluded papers based on titles, the results were exported to our reference
management program after the title exclusion step. Therefore, the number of unique initial results
is not known to us and we can only present the accumulative number of hits from the three
databases.

Search results in the databases were all sorted according to relevance of papers. According
to our observations, this criterion proved to be very accurate for our study since the number of
included results dropped very fast when they were classified as less relevant by the databases.

After sorting the results from the previous search engines, the ACM digital library was
searched and 3658 papers were found using the same search terms. In the top 350 most rele-
vant papers, no new papers with a relevant title were found that were not already included in our
final database. This suggested that we have already covered the most relevant results in the field.

3.4. Study Selection

For selection of studies we developed exclusion/inclusion criteria as described in this section.
The initial hits were filtered and excluded in several steps which will be explained below.

Exclusion criteria based on title:

• The paper discusses a different field than software, i.e. the title does not suggest that there
is any focus on software in that study.

• Short papers under 5 pages were excluded.

• Robustness is used as an adjective to describe something unrelated to software and it is
clear from the title that software robustness is not discussed in this paper. e.g. “Robust Re-
source Management for meta computers” where robust is used as an adjective to describe
resource management rather than the software.

Exclusion criteria based on abstract:

• If robustness is used in another meaning or the paper just claims that the software, method
or contribution they have made is robust without any focus on how and why they have
made it robust, then the paper is excluded.

• If the paper has a completely different focus than software robustness or software quality.
If this has not been detected during the title phase, then it is excluded in the abstract review
phase.

For instance, in some articles robustness describes the proposed method or a part of the devel-
opment process rather than the software itself. These cases were usually detected and excluded

6

during title or abstract phase. A common example was robust watermarks within software se-
curity that appeared very often but was out of the scope of our study although it had the word
robust and was in the field of software.

Exclusion criteria based on full text were the same as criteria based on abstract. In some cases
the product is claimed to be robust and judging whether there is any focus on software robustness
is not possible from the abstract. These cases were handled on the full text level and studies were
only included if the process of achieved robustness was presented. However, if robustness was
claimed with no elaboration on how and why it was achieved, the paper was excluded from the
study on full-text level.

3.5. Data Extraction and Synthesis
As mentioned in Section 3.3 papers that were clearly not related to the field of software

robustness, based on the title, were excluded. In total 753 studies were included. Any study that
has mentioned robustness and was in the field of software in a meaningful way was included
after the first selection phase. After the results from each search were completed, the papers that
had passed through the filter were moved to the final database. The cumulative number of unique
results after each search in the final database was 282, 561 and 601 which indicates the high
number of duplicates between the databases. These numbers are presented in Table 15.

Table 1: Initial search results for three databases and a control database

Database Search date Total hits Title filtering Cumul. unique
ISI 2010-12-31 2264 282 282
CPX 2010-12-31 3976 371 561
IEEE 2010-12-31 2953 148 601
ACM 2010-12-31 3645 - 601
Total 2010-12-31 9193 801 601

In the second phase of data extraction, the abstract of the 601 included studies was reviewed.
In this phase, 16 more papers were excluded based on title. These papers had passed through the
title exclusion although they should not have. Another 20 papers were excluded for being short
papers and 280 papers were excluded based on the abstracts.

The third phase of exclusion was done on full-text level and 134 more studies were excluded,
which left 144 studies for the next phase of the review. Statistics on how and when the studies
were excluded can be seen in Figure 1.

The final 144 selected papers were then categorized based on the research questions. The
categories used for each research question are presented in Table 2. Some of the categories are
trivial, for the more complicated facets we were partly inspired by other systematic reviews and
mappings.

The phase focus facet is divided based on the most common phases of software development.
However, we considered design and implementation as the same category since many studies
with implementation guidelines and contribution had a main focus on design.

5From the 3645 results found in the ACM digital library, the top 350 after ranking by relevance (approximately 10%)
were analyzed and compared to the results from the previous databases. No new relevant studies that were not already
included could be found. This step was conducted to ensure the completeness of the search.

7

Figure 1: Statistics on data selection in different phases on inclusion/exclusion

The categories in the system focus facet were developed as the studies were classified. The
category general includes the studies that do not have a certain system as focus and are applicable
to different types of systems.

The research type categories were inspired by [130]. Here, we have combined the categories
Validation Research and Solution Proposal since the distinction is often not easy. We also re-
placed Opinion Papers with call for research, Investigation.

The contribution facet was also partly inspired by [130]. Here, we have introduced the cate-
gories review for studies that review a certain concept or part of the field. We also added frame-
work to replace process since most of the studies with a process focus also introduce a tool,
method or model to help adopting the process and have a more generic view of the software ro-
bustness field. The last category added was evaluation. This category includes papers that further
evaluate an already published concept and do not introduce any new concepts or solutions.

In the last facet, Evaluation, we categorized the studies based on the type of evaluation they
have provided for their results. The Academic lab/toy category includes studies where the results
have been evaluated on small systems developed as case studies for that specific project. Studies
in the large academic category are also evaluated in an academic setting but on larger and already
existing projects that are not specifically developed for a case study and are used more broadly.
The open source category includes studies evaluated on existing open source systems. The small
industrial category consists of small case studies developed for evaluation of that specific study
in an industrial setting. Finally, studies with large industrial evaluation include studies with
evaluation on a larger and existing industrial project.

3.5.1. Selection and Extraction Validity
Validity control I

From the 601 papers that had passed the initial title filtering, 60 (10%) were randomly selected
and reviewed by author 2. This control was done on abstract level and the goal was to either
accept or reject based on the abstract. Full text filtering, classification and categorization of the
papers were left to the second validity control.

8

Table 2: Categories for the research questions

Phase Focus Requirement, design & implementation, evaluation, anal-
ysis, verification and validation (V&V), general

System focus Web application, distributed and network, real-
time/safety critical, COTS, Operating systems, embedded
systems, general

Research type Philosophical paper, solution proposal, evaluation paper,
experience report, review, investigation, call for research

Contribution fac. Tool, method, framework evaluation, metrics, model, re-
view

Evaluation Academic lab/toy, large academic, open source systems,
small industrial, industrial, no evaluation

In these 60 papers there were six deviations between the judgments of the two authors. After
studying these deviations two of the excluded papers in the initial selection which were included
by the control classification were judged to be included. In the other four cases the initial se-
lection was judged to be correct. The two new papers were eventually excluded in the full text
filtering step.

This control suggests that by studying 10% of the results, 10% irregularity was detected.
Therefore, the studies were reviewed again by author 1 to detect possible exclusions that could
be included or reexamined. The studies that could have been excluded by mistake were reviewed
again and if the initial judgment was not correct they were included.

In the next step, another 10% of the studies were screened by author 2 which resulted in no
inconsistencies. However, there were five studies that were accepted by author 2 at abstract level
that were rejected by author 1 in the full-text level. This means that these studies were accepted
by author 1 on abstract level as well.

Validity control II

To check the validity of categorization of results another control was performed. From the 144
accepted papers, 28 papers were randomly selected. Author 2 categorized the selected papers
without any communication and access to the rankings of author 1. In this case, there were six
deviations on ranking of evaluation of studies. After analyzing the deviations the reason was
found to be using different definitions of the categories. Author 1 had ranked studies working
on commercial systems in an academic context as large academic while author 2 had ranked
them as industrial. This was discussed and clarified between the two authors and the studies in
those categories were once again screened based on the definitions given in this paper. Two other
deviations were observed on the phase focus of the studies. Author 1 had ranked them in the
category design while author 2 had them in analysis. This also was found to be due to different
definitions of the phase analysis. Clarifying our definitions of this category as presented in the
paper, the authors agreed that the initial classification was correct. In three other cases author 2
had ranked the studies in more than one category, but on examining those papers the category
selected by author 1 proved to be the main contribution.

9

3.6. Threats to Validity

The most important threat with this result is the possibility of using other words than robust-
ness by some studies. However, since robustness is a commonly used term, the possibility of any
significant contribution not mentioning the word in the title or abstract is minimal. The already
large scope of the study would not allow us to expand this study with more search terms. Fur-
thermore, all the results known to us during the years we have worked in the field were included
in the final set of studies.

A limitation in this study is that some methods that are mainly used in studies focusing on
concepts such as security and defensive programming, which can also be used for robustness
assurance and design are not included. This is a common problem for many systematic reviews
that deal with broad but important concepts such as robustness. In this study, we decided not to
include the papers which are not directly related to robustness to limit the already large scope of
the paper. However, future work could also consider techniques that indirectly or only partly has
effects on software robustness.

Another threat that needs to be considered when conducting a systematic literature reviews is
the possibility of bias in selection. This concern was addressed as described in Section 3.5.1. The
selection phase was repeated by author 2 in two phases . The results show a satisfying validity
of the screening process.

The last validity threat was the possibility of existence of interesting studies in other fora.
However, the databases searched cover the area of software engineering well and we have no
reason to think that this does not apply for software robustness. Although the ACM digital
library was not fully searched, the search in this database provided no new papers in the top
10% most relevant results. Relevance has been a very accurate measure in all the other databases
and we assume that this rule applies to ACM digital library too. This control raises the level of
confidence on the coverage of the most important results.

4. Results and Analysis

In this section we present the results of the systematic review. The subsections are structured
based on the research questions mentioned in Section 3.1. Section 4.1 presents our findings
regarding RQ1. This section provides a more detailed overview of the main studies found by
this review sorted after the focus area. Section 4.2 gives statistics and overview of the system
focus of the included studies to answer RQ2. Section 4.3 discusses the quality of the research,
contribution and evaluation in the selected studies to answer RQ3 and its sub-questions. The
results in this section are in the form of statistics. The quality of each single study is thereby not
presented here. The goal is to give an overview of the quality of studies in the field and identify
gaps and weaknesses in the quality of the results.

4.1. Phase Focus of Studies

In this section, we present an overview of available literature in the field of software robust-
ness based on the phase of software development in focus. The different phases represented
in this study are analysis, requirements, design & implementation, verification & validation,
evaluation and general. While the first four categories are well-established phases of software
development, more theoretical papers that evaluate a hypothesis unrelated to a specific phase of
software engineering are categorized in the evaluation focus. The general category consists of

10

studies with clear contributions that do not have a certain phase focus and are general for the
field of software engineering or are valid for all phases of software development.

In each subsection, results with strong contributions are discussed in more detail and an
overview of the discussed area is presented. The list of all papers in each subsection can be
found in Table 3.

Table 3: Focus of the studies

Focus Papers
Verification & Validation [15] [18] [25] [26] [29] [30] [33] [35] [36] [37] [44] [45]

[51] [53] [57] [56] [61] [62] [65] [139] [79] [80] [81]
[83] [84] [85] [95] [94] [127] [93] [97] [100] [102] [107]
[109] [112] [113] [117] [118] [119] [120] [122] [123]
[125] [128] [129] [131] [137] [138] [140] [142] [143]
[145] [148] [150] [152] [158] [157] [161] [163] [162]
[167] [169] [104] [103] [59] [96] [101]

68

Design & Implementation [2] [3] [4] [7] [10] [14] [24] [32] [40] [41] [42] [43] [52]
[54] [55] [58] [60] [67] [70] [110] [71] [72] [73] [74]
[160] [75] [78] [87] [88] [98] [108] [111] [115] [121]
[132] [133] [134] [135] [136] [141] [144] [149] [151]
[154] [156] [165] [166] [168] [46] [64] [153]

51

Analysis [6] [9] [17] [27] [28] [31] [63] [69] [105] [126] [164] 11
Evaluation [8] [12] [16] [19] [39] [86] [114] [159] 8
General [20] [68] [38] 3
Requirements [66] [77] [146] 3

An interesting point in this table is the lack of studies in requirements engineering and main-
tenance. The main areas of requirements,analysis, design & implementation, and verification
& validation, are discussed in more detail in separate sections. The papers in general and the
evaluation category are discussed in section 4.1.5.

4.1.1. Requirements
According to our findings, the extent of published studies on software robustness require-

ments is very limited. No major study providing methods or tools on how to create requirements
to ensure robustness has been found in this study.

In an industrial experience report, Heimdahl and Czerny [66] discuss the importance of com-
pleteness in requirements engineering to achieve reliability and robustness, and provide analysis
on completeness of a large avionics system. Another contribution with the same focus is [77] that
discusses completeness of requirements as the main factor to achieve robustness in a software
system. In this study, Jaffe et al. suggests that for a system to be robust there should always be an
expected behavior to leave every failure state, even if that results in degrading the functionality of
the system. For this purpose, they propose a model that is evaluated in a large academic setting.

Another study with a certain focus on the requirements but main focus on testing is con-
ducted by Nebut et al. [123]. They introduce a technique “with a light declarative formalism to
express the mutual dependencies between the use cases, in terms of pre/post conditions (kind of

11

contracts). From these enhanced requirements, a labeled transition system is built to capture all
the possible valid sequences of use-cases from an initial configuration” [123]. Here, the goal is
to improve the robustness by considered all the possible traces and sequences in the application.

Studies [66, 77] also propose that completeness of robustness requirements is important but
there are no further studies that present a systematic way of ensuring the completeness. In gen-
eral, there are very few studies regarding robustness requirements and there is a gap of knowledge
that needed to be addressed. In an attempt to bridge this gap we conducted a study to identify
different types of robustness issues [146]. This study presents a framework called ROAST which
categorizes these robustness issues into patterns that can be used in the process of requirements
elicitation. Furthermore, ROAST suggests different abstraction levels for specification of robust-
ness requirements.

4.1.2. Analysis
Another major phase of software development is analysis. The identified studies in this

category focus on how robustness issues can be predicted and prevented early in the development
process.

For robustness analysis of web-based systems at an early stage of software development,
Calori et al. [28] propose a framework consisting of five steps:

1. Rank the severity of failure scenarios.
2. Capture system behavioral aspects and identify interface objects.
3. Examine potential failures and possible causes and effects.
4. Create a model of the system failure states with probability and severity for nodes and

edges.
5. Evaluate the nodes by entering evidence about the state of a variable.

This approach can be used to compare the severities and probability of occurrence of failure
scenarios. “The most critical failures can be detected and targeted for prioritized remedial ac-
tions. Furthermore, the influence of a preventive action on the system being developed can be
estimated. This can represent a powerful tool for design trade-off decisions.” [28]

In a study with a more formal approach, [6] presents an abstract interpretation of the LUSTRE
language to study propagation of errors and provides an analysis method for checking robustness
of LUSTRE functions.

In [98], Kulkarni and Tripathi study robustness in context-aware software. The paper presents
a forward recovery model for robustness issues encountered when using their framework for
developing context-aware software. They categorize the major failures into service discovery and
reconfiguration, service-level binding, service-level exceptions, and context invalidation failures.

On a more theoretical note, Laranjeiro et al. assess the effectiveness of using text classifi-
cation algorithms such as Support Vector Machines, Large Linear Classification and K-nearest
neighbor for identifying robustness issues in web service responses [101]. The results suggest
that large linear classification has a high precision in classifying robustness problems.

In another theoretical paper, Cheng-Ying and Yan-Sheng [31] claim that organizing excep-
tions into hierarchies can be of great benefit to construct robust code. In this study they create a
model for exception analysis to improve robustness of the system.

Another method for robustness analysis is introduced by [27], which presents RATF, a method
for combining robustness analysis and technology forecasting.

12

Finally, Groot [63] proposes an approach called degradation studies for analysis of how
system output degrades as a function of degrading system input such as incomplete or incorrect
inputs.

4.1.3. Design & Architecture
After verification and validation, with 51 included studies, design and implementation is the

largest focus group of the primary studies. One of the most discussed focus areas for design and
architecture is wrappers (encapsulation), which is used to mask and prevent the propagation of
robustness issues. Due to the large number of studies with focus on wrappers, these studies are
discussed in a separate subsection. Furthermore, some of the other contributions in the field of
robustness design and implementation are discussed in this section.

For automatically generating interface properties from high-level robustness rules, Acharya
et al. [3, 4] propose a framework. They argue that related interfaces have “similar structural
elements (such as function parameters, return values on success/failure, and error flags), when
specified at a certain abstraction level. The generic rules are translated into concrete properties
by a property engine that queries the specification database for interface information and the
pattern database for source-code level, programming-language specific information.” [3]

In a series of studies Huhns et al. [70, 110, 69, 134, 71, 72] claim that redundancy increases
robustness of software. They “describe a methodology based on active, cooperative, and per-
sistent software components, i.e. agents, and show how the methodology produces robust and
reusable software.”

Papers [41, 42] present a programming language for robust software systems, Bristlecone.
Bristlecone applications have two components: high-level organization description that is used
for recovery from an error to a consistent state and specifies how the applications conceptual
operations interact, and a low-level operational description that specifies the sequence of instruc-
tions that comprise an individual conceptual operation.

In another study, Hui and Lui [73] argue that to ensure the function of critical services their
operation can use but should not be dependent on less critical components. Otherwise, a minor
fault can propagate “along complex and implicit dependency chains and bring down the sys-
tem” [73]. In a theoretical attempt to address this issue, they present dependency algebra, a
framework for dependency management in real-time systems. The framework allows compari-
son of different designs from the perspective of robustness.

Adding error-handling code and design is another popular way to increase the robustness
of software. Keane and Ellman have “implemented a high-level language and runtime environ-
ment that allow failure-handling strategies to be incorporated into legacy Fortran and C analysis
programs while preserving their computational integrity” [87]. Moreover, in a series of stud-
ies, Issarny and Benatre [160, 74, 75] investigate the design and implementation of exception
handling support for architecture-based development environments.

On the other hand, Gabriel and Goldman [58] argue that achieving robustness by adding
explicit exception handlers and error detection code to the program decreases the maintainability
and increases the complexity of the system. Instead Gabriel proposes developing context-aware
programs to solve the robustness problem. The main robustness issues in context-aware systems
are [98]:

1. Failures in context-driven reconfigurations due to inaccessibility of services or services not
being in the correct state for performing the reconfiguration actions.

2. Object-binding failures

13

3. Service-level operational failures
4. Context invalidations due to lack of privilege or unmet condition

Kulkarni and Tripathi [98] present a recovery model for context-aware applications which “con-
sists of mechanisms for asynchronous event handling and synchronous exception handling. Events
represent occurrence of a particular state (normal or failure) related to a context-aware applica-
tion. Exceptions represent a subclass of events that arise synchronously during the execution of
an action within a role operation or a reaction.” [98].

Another study conducted by Hameed et al. [64] proposes an aspect-oriented approach to
separate error discovery and handling from the core functionality. This can limit the cost and
time for introducing changes in the system and make the robustness and quality testing of a
system cheaper in the long run.

In a theoretical study, Ambriola and Gervasi [10] identify several different quality attributes
such as robustness and investigate the effect of factors such as separation, abstraction, composi-
tion, replication and resource sharing in architecture on these quality attributes. The result is that
replication has a positive effect on robustness and resource sharing has a negative effect.

Another aspect of software robustness is stability against unexpected events in the execution
environment. Choi [32] introduces a kernel resource protector which shields the kernel from
faults generated by modules. Observing the relationship between modules and resource objects,
the protector can detect and resolve misuses of kernel resources by modules.

Wrapper

Wrapping or encapsulating external modules or services is a common design method used to
improve robustness. The method aims at filtering the inputs and avoid the propagation of errors
in the system.

Schmidt [144] presents the Wrapper Facade pattern to encapsulate low-level functions and
data structures with object-oriented class interfaces. “Common examples of the Wrapper Facade
pattern are class libraries like MFC, ACE, and AWT that encapsulate native OS C APIs, such as
sockets, pthreads, or GUI functions” [144]. Schmidt proposes a cohesive approach for wrapping
classes in the same pattern. He proposes the following activities for creating cohesive classes:

• Coalesce multiple individual functions into class methods

• Select the level of indirection

• Determine where to handle platform-specific variation

The aim for this encapsulation is partly to avoid robustness problems to happen or propagate.
Multilayer systems are another focus area for using encapsulation to achieve higher robust-

ness. Lu et al. [108] investigate robustness in multi-layered software architectures such as AU-
TOSAR (AUTomotive Open System ARchitecture) which is the new architecture standard in
the automotive industry. Lu et al. maintain that in such systems to minimize the error prop-
agation from one layer to the next can increase the severity of the error. They argue that the
quality of these systems relies not only on the correctness of underlying services but also on
multilevel properties. To evaluate this argument they develop a “software as a set of wrappers
checking multilevel properties at runtime. The wrappers check the correctness of the application
that depends on the behavior of the middleware (communication channels between application
components) and OS functions (task management and scheduling) despite accidental and design

14

faults that could impair both the control flow and the data flow of the application. They also
trigger recovery actions.” [108]

Another area of focus for robustness design is programming libraries. Most common libraries
are designed for reuse and focus on flexibility, neglecting robustness requirements [55]. Frick et
al. [55, 54] investigate the trade-off between flexibility and robustness. They present an object-
oriented library of algorithms and data structures with focus on robustness and flexibility called
KARLA. In a similar study, De Vale and Koopman [43] present a safe/fast I/O library with
higher safety and robustness than standard I/O libraries which has the same performance. The
robustness of this library is evaluated using Ballista robustness testing tool.

In another attempt to increase the robustness of C libraries, Fetzer and Zhen [52] present the
HEALERS system. Using header files and manual pages, HEALERS automatically generates
a wrapper for each global function that performs argument checking before invoking C library
functions. HEALERS has also been used for robustness and security hardening of COTS in [154]

Other interesting results using wrappers to increase robustness can be found in [78, 24, 40,
141, 149, 7, 46].

4.1.4. Verification and Validation
With 68 studies, robustness verification and validation (V&V) is the largest focus group in

software robustness phases. The main technique used in this category is testing. This section is
divided into three subsections robustness benchmarks, fault injection and automated robustness
testing. Automated robustness testing tools almost exclusively use fault injection methods. How-
ever, the studies in that category have their main focus on the automated tool, unlike others that
use less sophisticated automation mechanics for fault injections and focus more on presenting
the technique they use.

Robustness benchmarks

As mentioned above, an important discussion in robustness testing is the different methods to
benchmark the level of robustness in a system.

CRASH is the most commonly used metrics for robustness failures as presented in [95]. For
grading the severity of robustness vulnerabilities, CRASH uses 5 levels:

C Catastrophic (OS crashes/multiple tasks affected)

R Restart (task/process hangs, requiring restart)

A Abort (task/process aborts, e.g. segmentation violation)

S Silent (no error code returned when one should be)

H Hindering (incorrect error code returned)

In another study, Dingman [44] uses the returned messages from an aerospace system under
robustness test to create measurements and benchmarks for robustness failures. The results are
very similar to CRASH.

Siewiorek et al. [152] present another benchmark which classifies robustness failure reasons
into four categories: omissions, timing, value or state of Response, and crash. Another study
providing robustness benchmarks is [26], which presents an experience report of developing a
benchmark to measure system robustness. These metrics are used to evaluate robustness of C

15

libraries. Robustness failures were mostly found in the following parts of the libraries: task han-
dling, numeric manipulations, I0 and System protection mechanisms. A CRASH-like benchmark
was also presented for failure classification in this study.

On a different level, Mukherjee and Siewiorek [122] divide existing robustness benchmarks
into the following categories:

• Crashme: random data against system interfaces.

• Modular: Regard the system as isolated modules and check the robustness of each module.

• Hierarchical: decompose the software based on features and test robustness of each fea-
ture.

They also propose a hierarchical benchmark based on features and test it on C++ applica-
tions [122].

Some other robustness benchmarks included in this review can be found in [85, 117].

Fault injection

Software fault injection is the primary method used for robustness testing. Fault injection tech-
niques are classified into the following categories by [169]:

• Software implemented fault injection where faults are injected by means of software.

• Scan-chain (flip-flopping ICs) implemented fault injection where faults are injected to
physical system using scan-chains.

• Pin level fault injection where faults are injected to the pins of an IC.

• Fault injection by external disturbance where heavy ion radiation and power disturbance
are used for injecting faults by external disturbances.

• Fault injection in emulated systems where faults are injected to an emulated model of the
system.

Software robustness testing using fault injection uses exclusively the first and in some cases the
last technique.

Voas et al. [164] present an automated software analysis environment called Pisces Safety Net
(PSN) which is a part of Whitebox Software Analysis Toolkit that injects faults against hardware
and software. Instead of analyzing correctness, this approach examines output behavior and aims
to analyze and avoid dangerous and life-threatening outcomes. The goal of PSN is to identify
weaknesses in software with catastrophic consequences and locate weaknesses in code. Input to
PSN is a program, an operational profile, and a description of unacceptable outcomes. Based on
that, PSN returns locations in code with potential weaknesses. PSN requires some manual set-
ups for what part of the code to perform fault injection on and what is an unacceptable output.

Java applications have also been the subject of robustness fault injection tests. Zamli et
al. [169] presents SFIT, a fault injection tool to assess the dependability of Java COTS, while
Olah and Majzik [126] have developed an Eclipse-based fault injection framework that provides
a model-based approach and a graphical user interface to specify both the fault injection experi-
ments and the run-time monitoring of the results for Java applications.

16

Robustness testing of network protocols is another area of focus. Tsanchi et al. [158] test
telecommunication systems’ fault tolerance by injecting software faults into the service manager
and observing the behavior in the fault manager.

In another study, Chuanming [33] uses a formal test specification language, TTCN, to de-
scribe test cases for robustness testing of network protocols. TTCN is also used in [140] to
create a robustness test framework consisting of two phases: (1) Creating increased specification
by considering hazards in the specification model (2) A method to generate robustness test cases
in TTCN-3 from the increased specification provided in (1).

Fault injection has also been used to test and evaluate robustness of web applications. In [100]
an online tool called Wsrbench is presented for evaluation of web services. Another study that
focuses on this issue is [145], which provides a framework for testing robustness of web services.
For white-box coverage testing of error recovery code in Java web services, Fu et al. [57, 56] use
compiler-directed fault injection.

Several studies concerning robustness testing of Commercial-Off-the Shelf (COTS) were
found in the review. The interest in using COTS is rapidly increasing due to development of
more complex systems and the amount of money and time that can be saved using third-party
software. However, there is a need to evaluate the robustness and reliability of these systems
before they can be integrated into the solution. Barbosa et al. [15] present a methodology for
evaluating robustness and dependability of COTS using fault injection techniques, while Sarbu
et al. [142] provides a robustness testing method for testing operating system drivers (COTS OS
extensions) using their operational state model.

Finally, Johansson et al. [81] study the impact that varying the time for error injection has on
evaluation of software robustness. Using “call blocks (i.e. a distinct sequence of calls made to
the driver), the trigger for injection can be used to guide injections into different system states,
corresponding to the operations carried out.”

Some other studies using fault injection techniques for robustness testing are available in [25,
137, 138, 120, 124]

Automated robustness testing

Automated robustness testing tools are common contributions in the area of software robustness.
The main idea of these tools is to use stress testing or fuzz testing to try to crash a system and
assess its robustness. Several fault injection studies mentioned earlier use this principle as well,
but since their main focus has been on the use of fault injection and not on the resulting tool, they
were discussed in the previous part.

The most well-known contribution in robustness testing is the Ballista project. In [93] Koop-
man describes the Ballista robustness testing tool. Ballista uses random and extreme values of
different parameter types against system interfaces to test their robustness and stability against
random and extreme values. The results of Ballista testing on operating systems identify sig-
nificant numbers of robustness failures in many well known operating systems [94, 97, 148].
Ballista-like testing might not be a substitute for other testing activities but it can serve to check
the overall quality of software at a low cost due to its scalability and automation. Furthermore, it
can estimate the extent of potential problems.

Several studies have used Ballista and the CRASH metrics to evaluate robustness of different
kinds of systems. In [127] different operating systems are tested and compared using Ballista and
CRASH. Invalid file pointers, NULL file pointers, Invalid buffer pointers, NULL buffer pointers,
MININT integers, and MAXINT integers are the most detected robustness problems. Fernsler

17

and Koopman [51] use Ballista exception handling to evaluate robustness of the high-level ar-
chitecture of run-time infrastructure (RTI) which is a distributed simulation system providing
robust exception handling. In another study, Jiantao et al. [80] extend Ballista to test the excep-
tion handling robustness of C++ ORB client-side application interfaces. They also provide a
simple probing method for eliminating simple cases of robustness failures.

JCrasher [37] is another Ballista-like fuzz testing tool specialized for Java applications.
“JCrasher offers several novelties: it transitively analyzes methods, determines the size of each
tested methods parameter space, and selects parameter combinations and therefore test cases at
random, taking into account the time allocated for testing; it defines heuristics for determin-
ing whether a Java exception should be considered as a program bug or whether the JCrasher
supplied inputs have violated the codes preconditions” [37].

In other studies, Ghosh et al. [62, 60, 61, 143] wrap “executable application software with
an instrumentation layer that can capture, record, perturb, and question all interactions with
the operating system. The wrapper is used to return error codes and exceptions from calls to
operating system functions. The effect of the failure from the OS call is then assessed. If the
system crashes, it is non-robust” [62].

Belli et al. propose a model-based approach to robustness testing [18]. The models consist
of event sequence graph and decision tables which are later tweaked by the testing application in
order to generate robustness test cases.

Some other automated robustness testing tools identified in this review are presented in [167,
45, 53, 118, 119, 104, 103].

4.1.5. Other Work
There are some other major contributions that could not be classified in any of the above

sections. Therefore, we will discuss them separately here.
In a theoretical study, De Vale and Koopman [39] argue that software developers identify

two main reasons why software systems are not made robust: performance and practicality.
They claim however that, by using automated wrappers and robustness testing techniques many
of these problems can be solved. Furthermore, in a case study they claim that Maxion’s hy-
pothesis that “developers without specific training on the topic might not fully grasp exceptional
conditions seems to hold” [39]. Thereby, they suggest that training developers to use robustness
improvement techniques is another effective way of increasing robustness of a software.

Another theoretical paper about robustness is [68] where Henzinger identifies two challenges
in embedded systems design: predictability and robustness. In this paper robustness is regarded
as a form of continuity since in a robust system the reaction changes slightly if the environment
changes slightly, and its execution properties change slightly if the platform changes slightly.
This theory is used to create a model of how a robust system should behave and how it can be
tested.

In another study, Maxion [114] divides the reason for programs failures into two main cat-
egories: logic errors in the code, and exception failures. Exception failures can account for up
to 2/3 of system crashes. Then he goes on to test the hypothesis that robustness for exception
failures can be improved through the use of dependability cases. “Dependability cases, derived
from safety cases, comprise a methodology based on structured taxonomies and memory aids for
helping software designers think about and improve exception-handling coverage” [114].

Some other important contributions are made by Nebut et al. [123] who present a method
that generates robustness tests using requirement contracts, Mendes et al. [116] who propose a

18

method to benchmark the robustness of web servers, and Luo et al. [109] who have developed a
method for robustness test generation and execution using input syntax and interaction scenarios.

4.2. System Focus
Table 4 shows the primary studies categorized based on their main system focus. The main

categories found were commercial-off-the-shelves (COTS), distributed & network systems, em-
bedded systems, operating systems, real time & safety critical systems and web applications.
There were some results that focused on other types of systems than the ones mentioned above.
These are listed as other. There also exists a category general which includes studies that do
not have any special kind of system in focus and their results can be applied to many different
contexts and systems.

Table 4: System focus of the studies

System focus Papers #
General [2] [4] [10] [17] [18] [19] [24] [26] [27] [29] [31] [37]

[39] [41] [42] [43] [52] [54] [55] [58] [69] [70] [71] [75]
[79] [80] [83] [84] [86] [87] [88] [109] [111] [113] [114]
[120] [121] [122] [123] [126] [131] [132] [38] [134]
[135] [136] [140] [141] [144] [151] [152] [156] [164]
[166] [168] [104] [103] [59] [64] [146]

60

Other [9] [40] [63] [110] [72] [74] [16] [25] [45] [78] [160] [98]
[117] [158] [159] [167] [96] [153]

18

Operating System [4] [8] [32] [53] [61] [81] [85] [127] [94] [93] [95] [107]
[118] [119] [125] [143] [148]

17

Web Application [28] [57] [56] [65] [139] [100] [102] [112] [145] [162]
[163] [46] [101] [116]

13

COTS [15] [35] [36] [60] [62] [97] [108] [128] [129] [142] [154]
[165] [169]

13

Real-Time / Safety Critical [20] [30] [44] [66] [67] [73] [77] [115] [133] [157] [161] 11
Embedded System [6] [14] [68] [105] [137] [138] 6
Distributed & Network [7] [12] [33] [51] [149] [150] 6

COTS, operating systems and web applications are the categories with most contributions.
In the case of COTS the majority of studies focus on finding design or verification methods
to ensure robustness of a system using COTS. This matter was discussed in Section 4.1 when
the focus area of each study was presented. The same applies to web applications. However,
regarding operating systems the main focus is to evaluate and test the robustness of different
parts of them, mainly using fuzz testing techniques. Ballista and its extensions are commonly
used tools for this purpose.

4.3. Quality of Research/Contribution
This section discusses the quality of the primary studies based on their research type and

contribution. The quality is ranked based on several criteria here. The type of research is dis-
cussed in 4.3.1. Another criterion is the contribution facet (the type of contribution) which is

19

Figure 2: Research type

presented in Section 4.3.2. The last criterion is the type of evaluation performed to evaluate the
contributions. This criterion is discussed in Section 4.3.3.

4.3.1. Research Type
Figure 2 shows the statistics on the type of the study in the selected primary studies. Many of

the studies conduct several types of research. Therefore, the main contribution of the study was
considered for categorization.

Most selected studies had some kind of evaluation which will be discussed in Section 4.3.3.
However, evaluation as research type below refers to studies that do one of the following:

1. Evaluate robustness of a system using an existing method or tool
2. Evaluate an already existing method by applying it to different systems

Studies in the review category are the ones that are secondary studies reviewing a field to answer a
specific research question. Solution proposals include studies that provide any new contributions
or extend already existing ones.

As seen in Figure 2, the absolute majority of the research involves solution proposal or evalu-
ation. The results suggest that there is a need for more overview studies like this one to coordinate
and summarize the existing studies in the field.

It is notable that there are three review studies included in this review. The first review
is presented in [38] and gives the state of art for development of real-time software where a
minor focus is robustness. The second review [151] provides an overview of the use of formal
methods in the developing robust and reliable safety-critical systems. The last review [151]
compares different techniques for handling incomplete data in databases. One of the criteria for
the comparison is robustness. This overview was given to show that studies similar to the one
presented in this paper have not been previously done.

Our experience suggests that despite several existing results, the industry usually has prob-
lems adopting these results. One way to solve that problem is to perform overview studies like
this one to present the academic results to the industry. The other way is to try to understand the

20

Figure 3: Contribution facet

problems of the industry and find their reasons behind this. This was done in our previous study
presented in [147].

4.3.2. Contribution facet
Figure 3 shows a categorization of the studies based on their contributions. Similar to the

issue discussed about the research type, most papers had more than one type of contribution.
This was addressed in the same way as discussed in Section 4.3.1.

Evaluation had the same definition as the one presented in Section 4.3.1. The reason why
there are not the same number of studies of the type evaluation in contribution and research type
is that in some cases, although the study focused on evaluating a system or method, the main
contribution was a type of metrics, method or tool which was considered more important than
the evaluation results itself.

The majority of contributions were in the form of frameworks, methods or models. A frame-
work is a detailed method which has a wide purpose and focuses on several research questions
or areas. However, a method usually has a more specific goal and a narrow research question
or purpose. A model is different from both the contribution facets mentioned above in the sense
that it gives an abstract classification or model of a topic and problem rather than a specific and
tangible way of solving a specific problem.

Alongside providing a model, framework, evaluation or method, many studies provided a tool
for evaluating their concept. These studies were not classified in the tool category as contribution
facet. Only the studies where the tool was the major topic are classified in this category.

Metrics is another type of contribution facet that provides guidelines for how to measure
different aspects of robustness.

Figure 3 suggests there is a relatively even distribution in the contribution facets of the studies
found. However, there number of reviews are much smaller and there is no systematic review
with a more general focus, which further motivates the need for the current study.

21

Figure 4: Type of evaluation

4.3.3. Evaluation
One of the important metrics for measuring the strength of academic results is their evalua-

tions. Figure 4 gives statistics on how the primary studies found in this review were evaluated.
Academic lab/toy refers to studies where for the purpose of evaluation a small program has

been developed or when a case study on a small commercial system was performed. Academic
OSS (Open Source System) refers to the studies where the evaluation was done using an open
source system. The results of these studies are usually more reliable than the previous category.
Large academic evaluations refer to the studies where the evaluation is done on large commercial
systems or a large number of small systems. These systems can be large commercial products,
but if there is no indication of performing action research in an industrial context, the studies
were classified in this category. These studies are usually reliable and large enough for proving
a hypothesis.

Small industrial evaluation refers to studies where the industrial context is mentioned but
the evaluation is done on one or two small projects. The industry category includes studies
performed in an industrial context which include large projects or more than two small projects.
The results of these studies are also strong and typically on the same level as large academic
results.

As seen in Figure 4, 65% of the studies either lack evaluation or have a small academic
evaluation. From the total of 144 studies, 13% are evaluated in either a small industrial project or
a large open source system. The results are considered medium-strong from the evaluation point
of view. The remaining 21% of the studies are evaluated either in larger industrial contexts or in
large academic projects which typically work on commercial systems. Furthermore, 86% of the
studies with strong evaluation focus on verification and validation. These numbers suggest that
there are very few overall results in software robustness, especially in areas other than verification
and validation.

22

5. Discussion

This systematic review gives an overview of the field of software robustness. According to
the results, we can conclude that the research contributions in some areas of software robustness
are very limited. The main gap we identified was the lack of studies on elicitation and specifica-
tion of robustness requirements. Verification and validation in the form of testing is the largest
focus area, followed by design and architecture solutions to improve robustness. Fault injection,
automated robustness testing tool, and random interface testing are the main practices used for
robustness testing. None of the studies focused on other verification and validation activities than
testing.

Almost all the studies focus on robustness issues caused by invalid inputs, and they ignore
other aspects of robustness included in the IEEE definition. More complex aspects of robustness
that we discuss in [146], such as time out, interrupts, unexpected events, and stressful execution
environment are rarely considered in these studies.

Robustness focuses on the states and events that should not happen in a system, rather than
how the system should function in ordinary cases. It is cumbersome or even impossible in many
systems to create a complete specification of all the possible events and states. Therefore, most
academic and industrial projects neglect robustness requirement elicitation and specification.
This neglect in many cases results in unawareness of the potential robustness risks among the
developers and testers and decreases the overall robustness of the system. As mentioned, it can be
uneconomical and even impossible for companies to create a complete requirement specification,
which considers all the robustness risks. Nevertheless, the companies should be aware of these
risks in a systematic manner, and consider specifying the most crucial risks with the largest
potential negative impact.

Most identified design and architecture studies focus on interface wrappers that encapsulate
external component interfaces from the rest of the system. This method is mainly used when
working with COTS or third-party applications and services. Wrappers filter the input and output
data from the external modules. Another popular design method to achieve robustness is graceful
degradation. Since the developers are not always able to predict or intercept robustness issues it
can be necessary to degrade the functionality of the system in a controlled manner.

The majority of the published studies on robustness focus on verification and validation of
the system in the presence of input with faulty value. Most methods and tools introduced in this
regard generate random test cases based on a simple model of the system. Although this method
can discover robustness risks in the system, the high level of randomness and lack of structure
and traceability with the requirements in most of these studies prevent us from guaranteeing the
complete robustness of the system. The reason for this is that in order to prove the robustness
of the system a more structured approach considering every possible state of the system should
be taken. Randomly testing some parts of the systems can make us more comfortable with the
robustness of the system but does not necessarily eliminate all potential robustness risks.

The automated robustness testing methods can only be viewed as complementary to other
types of testing. It can not replace unit testing, system testing, overall functionality testing or even
testing of other quality attributes. The reason for the popularity of the automated testing methods
is the fact that they are to a large extent automated and do not require a large development and
testing effort. Although this might be enough for smaller systems, for more complex and safety-
critical systems or systems with requirement on high safety and availability a more systematic
method is required to ensure or improve robustness.

We can draw many interesting conclusions based on the statistics provided in this paper.
23

Other than the majority of the paper with a general system focus, there are studies that specifi-
cally focus on web applications, COTS and operating systems. Since robustness is an especially
important attribute for embedded systems, more studies with this specific system focus can be
valuable to the practitioners.

Looking at the quality of studies, the conclusion is that many studies introduce new ideas and
solutions to problems regarding software robustness but fail to evaluate their contributions prop-
erly and show their validity in larger contexts. Furthermore, given our findings in [147], many of
the results are not usable for the industrial projects and remain pure academic contributions. One
reason for this is lack of industrial validation and the fact that studies remain in a lab or academic
context and never take the step to be evaluated in an industrial setting. Another reason is that
academic results tend to be context-specific and hard to generalize. Therefore, they cannot be
applied to many industrial situations. The strongest results with strong evaluation found in this
review are focused on testing of large systems such as operative systems. These tests are mostly
randomly generated test cases based on the structure of the system under test. We recommend the
use of statistical and evidence-based methods as described in [11, 91] for design and evaluation
of future studies in the field. This will provide more scientific, and repeatable results which are
more useful for the industry.

6. Conclusion

This paper presents a review of the state of knowledge in the field of software robustness
based on a systematic literature review. In total, we analyzed 9193 primary studies from the three
well-known, scientific, digital libraries: ISI Web of Knowledge, IEEE Xplore and Engineering
Village (Compendex & Inspec). Another 350 most relevant results were browsed from ACM
digital library to ensure the completeness of our search.

A total of 601 papers were chosen based on primary title exclusion. After another title exclu-
sion and abstract and full-text exclusion phases, 144 studies were selected. Based on the research
questions, each study was classified based on development phase focus, system focus and quality
of the research and evaluation.

The results indicate that in the field of software robustness there are many studies on robust-
ness testing of COTS and operating systems, but very few studies about requirement elicitation
and specification of robustness. Fault injection and automated testing tools based on fault in-
jection are the main areas for contributions on robustness testing. The main contributions for
improving robustness on the design and architecture level, the second largest area of contribu-
tions, focus on the use of wrappers and encapsulation of existing software components. Another
finding was that most studies focus on a very narrow definition of robustness. Most studies only
consider the invalid input aspect of robustness and neglect other more complex aspects like time
outs, interrupts and robustness problems related to the execution environment of the software.

The quality of the studies included in this review varied. In total, 65% of the papers have weak
or no evaluation, while only 21% of the contributions are strongly evaluated in large academic
or industrial contexts. Therefore, there is a clear need to conduct stronger research in the areas
where there is a gap of knowledge or where the existing solutions are not evaluated enough to be
useful in industrial contexts.

Finally, we think that there is more research needed on eliciting and specifying robustness
requirements. Stronger evaluation, especially industrial evaluation, of the studies is also strongly
recommended in the future. Another issue that needs to be addressed is to consider more types

24

of issue that can lead to robustness problems. Today, most of the studies focus on robustness
in presence of input with faulty value but areas such as robustness in presence of input with
unexpected timing or in presence of stressful environmental conditions has not been research as
actively.

7. References

[1] , 1990. IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990.
[2] Abie, H., Savola, R. M., Dattani, I., November 2009. Robust, secure, self-adaptive and resilient messaging mid-

dleware for business critical systems. In: 2009 Computation World: Future Computing, Service Computation,
Cognitive, Adaptive, Content, Patterns (ComputationWorld 2009). IEEE, Piscataway, NJ, USA, pp. 153–160.

[3] Acharya, M., Sharma, T., Xu, J., Tao, X., September 2006. Effective generation of interface robustness properties
for static analysis. In: Proceedings of the 21st IEEE International Conference on Automated Software Engineer-
ing. IEEE Computer Society, Los Alamitos, CA, USA, p. 4.

[4] Acharya, M., Tao, X., Jun, X., November 2006. Mining interface specifications for generating checkable ro-
bustness properties. In: 2006 17th IEEE International Symposium on Software Reliability Engineering. IEEE
Computer Society, Los Alamitos, CA, USA, p. 10.

[5] Afzal, W., Torkar, R., Feldt, R., 2009. A systematic review of search-based testing for non-functional system
properties. Information and Software Technology 51 (6), 957 – 976.

[6] Ait-Ameur, Y., Bel, G., Boniol, F., Pairault, S., Wiels, V., 2003. Robustness analysis of avionics embedded
systems. In: 2003 ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES’03), 11-13 June 2003. Vol. 38 of SIGPLAN Not. (USA). ACM, USA, pp. 123–132.

[7] Al-Khanjari, Z. A., Woodward, M. R., Kutti, N. S., Ramadhan, H., Shibab, K., 2003. Masking errors through
software robustness. In: International Conference on Internet Computing - IC’03, 23-26 June 2003. Vol. 2 of
International Conference on Internet Computing - IC’03. CSREA Press, USA, USA, pp. 809–817.

[8] Albinet, A., Arlat, J., Fabre, J.-C., jun. 2004. Characterization of the impact of faulty drivers on the robustness of
the linux kernel. Dependable Systems and Networks, 2004 International Conference on, 867 – 876.

[9] Allen, J., 2005. Towards robust agent-based dialogue systems. In: 2005 IEEE Workshop on Automatic Speech
Recognition and Understanding, 27 Nov.-1 Dec. 2005. IEEE, Piscataway, NJ, USA, p. 4.

[10] Ambriola, V., Gervasi, V., February 1998. Representing structural requirements in software architecture. In: Pro-
ceedings of IFIP TC2 WG2.4 Working Conference on Systems Implementation 2000: Languages, Methods and
Tools. Chapman & Hall, London, UK, pp. 114–127.

[11] Arcuri, A., Briand, L., 2011. A practical guide for using statistical tests to assess randomized algorithms in
software engineering. In: Proceeding of the 33rd international conference on Software engineering. ACM, pp.
1–10.

[12] Arunchandar, V., Memon, A. M., 2004. Aspire: automated systematic protocol implementation robustness evalua-
tion. In: Proceedings of the 2004 Australian Software Engineering Conference, 13-16 April 2004. IEEE Computer
Society, Los Alamitos, CA, USA, pp. 241–250.

[13] Avizienis, A., Laprie, J., Randell, B., 2001. Fundamental Concepts of Dependability. Tech. Rep. 1145, University
of Newcastle.

[14] Bak, S., Chivukula, D., Adekunle, O., Sun, M., Caccamo, M., Sha, L., apr. 2009. The system-level simplex archi-
tecture for improved real-time embedded system safety. Real-Time and Embedded Technology and Applications
Symposium, 2009. RTAS 2009. 15th IEEE, 99–107.

[15] Barbosa, R., Silva, N., Duraes, J., Madeira, H., 2007. Verification and Validation of (Real Time) COTS Prod-
ucts using Fault Injection Techniques. In: The 6th International IEEE Conference on Commercial-off-the-Shelf
(COTS)-Based Software Systems, 2007. ICCBSS ’07. pp. 233–242.

[16] Baudry, B., Le Traon, Y., Jezequel, J. M., 2001. Robustness and diagnosability of OO systems designed by
contracts. In: Proceedings of the 7th International Software Metrics Symposium. METRICS 2001, 4-6 April
2001. IEEE Computer Society, Los Alamitos, CA, USA, pp. 272–284.

[17] Belcastro, C., Chang, B.-C., 2002. Uncertainty modeling for robustness analysis of failure detection and accom-
modation systems. Proceedings of the 2002 American Control Conference 6, 4776–4782.

[18] Belli, F., Hollmann, A., Wong, W. E., 2010. Towards scalable robustness testing. In: Secure Software Integration
and Reliability Improvement (SSIRI), 2010 4th International Conference on. pp. 208–216.

[19] Bennani, M., Menasce, D., may. 2004. Assessing the robustness of self-managing computer systems under highly
variable workloads. Proceedings of the International Conference on Autonomic Computing, 62–69.

[20] Berztiss, A. T., 1994. Safety-critical software: a research agenda. International Journal of Software Engineering
and Knowledge Engineering 4, 165–181.

25

[21] Biolchini, J., Mian, P., Natali, A., Travassos, G., 2005. Systematic review in software engineering. System Engi-
neering and Computer Science Department COPPE/UFRJ, Technical Report ES 679 (05).

[22] Boehm, B., 1978. Characteristics of software quality. North-Holland.
[23] Boehm, B., Brown, J., Lipow, M., 1976. Quantitative evaluation of software quality. In: Proceedings of the 2nd

international conference on Software engineering. IEEE Computer Society Press, pp. 592–605.
[24] Brito, P., de Lemos, R., Rubira, C. M. F., 2008. Verification of exception control flows and handlers based on

architectural scenarios. In: High Assurance Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE. pp.
177–186.

[25] Brito, P. H. S., de Lemos, R., Martins, E., Moraes, R., Rubira, C. M. F., 2009. Architectural-based validation of
fault-tolerant software. In: The 4th Latin-American Symposium on Dependable Computing, 2009. LADC ’09.
pp. 103–110.

[26] Byung-Hoon, S., Hudak, J., Siewiorek, D., Segall, Z., 1992. Development of a benchmark to measure system
robustness: experiences and lessons learned. In: Proceedings of the 3rd International Symposium on Software
Reliability Engineering (Cat. No.92TH0486-1), 7-10 Oct. 1992. IEEE Computer Society, Los Alamitos, CA,
USA, pp. 237–245.

[27] Calas, G., Boklund, A., Mankefors-Christiernin, S., 2006. A First Draft of RATF: A Method Combining Robust-
ness Analysis and Technology Forecasting. In: Information Technology: New Generations, 2006. ITNG 2006.
3rd International Conference on. pp. 72–77.

[28] Calori, L. C., Stalhane, T., Ziemer, S., 2007. Robustness analysis using FMEA and BBN - Case study for a
web-based application. In: WEBIST 2007: Proceedings of the 3rd International Conference on Web Information
Systems and Technologies, Vol IT - INTERNET TECHNOLOGY.

[29] Chan, H. A., 2004. Accelerated stress testing for both hardware and software. In: Proceedings of the Annual
Reliability and Maintainability Symposium, 26-29 Jan. 2004. Proceedings of the Annual Reliability and Main-
tainability Symposium. 2004 (IEEE Cat. No.04CH37506C). IEEE, Piscataway, NJ, USA, pp. 346–351.

[30] Chattopadhyay, J., 2006. Methodology to test the robustness of a fault tolerant system to meet realtime require-
ments. Journal of Aerospace Quality and Reliability 2 (Copyright 2009, The Institution of Engineering and Tech-
nology), 81–88.

[31] Cheng-Ying, M., Yan-Sheng, L., 2005. Improving the robustness and reliability of object-oriented programs
through exception analysis and testing. In: Proceedings of the 10th IEEE International Conference on Engineering
of Complex Computer Systems, 2005. ICECCS 2005. pp. 432–439.

[32] Choi, J., 2007. Kernel aware module verification for robust reconfigurable operating system. Journal of Informa-
tion Science and Engineering 23 (5), 1339–1347.

[33] Chuanming, J., Zhiliang, W., Xia, Y., Jianping, W., 2008. A formal approach to robustness testing of network pro-
tocol. In: Network and Parallel Computing. IFIP International Conference, NPC 2008. 18-20 Oct. 2008. Springer-
Verlag, Berlin, Germany, pp. 24–37.

[34] Chung, L., do Prado Leite, J., 2009. On non-functional requirements in software engineering. In: Borgida, A.,
Chaudhri, V., Giorgini, P., Yu, E. (Eds.), Conceptual Modeling: Foundations and Applications. Vol. 5600 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 363–379.

[35] Costa, D., Madeira, H., 1999. Experimental assessment of COTS DBMS robustness under transient faults. In:
Proceedings of the 1999 Pacific Rim International Symposium on Dependable Computing, 16-17 Dec. 1999.
IEEE Computer Society, Los Alamitos, CA, USA, pp. 201–208.

[36] Costa, D., Rilho, T., Madeira, H., 2000. Joint evaluation of performance and robustness of a COTS DBMS through
fault-injection. In: Proceedings of the International Conference on Dependable Systems and Networks (includes
FTCS-30 30th Annual International Symposium on Fault-Tolerant Computing and DCCA-8), 25-28 June 2000.
IEEE Computer Society, Los Alamitos, CA, USA, pp. 251–260.

[37] Csallner, C., Smaragdakis, Y., 2004. JCrasher: an automatic robustness tester for Java. Software-Practice & Ex-
perience 34 (11), 1025–1050.

[38] de la Puente, J. A., 1994. Real-time software development: a perspective. In: Proceedings of the 12th Triennial
World Congress of the International Federation of Automatic Control, 18-23 July 1993. Pergamon, Oxford, UK,
pp. 693–696.

[39] De Vale, J., Koopman, P., 2002. Robust software - no more excuses. In: Proceedings of the International Confer-
ence on Dependable Systems and Networks, 23-26 June 2002. IEEE Computer Society, Los Alamitos, CA, USA,
pp. 145–154.

[40] Dehnert, J., 2002. Non-controllable choice robustness expressing the controllability of workflow processes. In:
Proceedings of the Application and Theory of Petri Nets 2002. 23rd International Conference, ICATPN 2002. 24-
30 June 2002. Vol. 2360 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, pp. 121–141.

[41] Demsky, B., Dash, A., 2008. Bristlecone: A language for robust software systems. In: ECOOP 2008 - Object-
Oriented Programming. 22nd European Conference, 7-11 July 2008. ECOOP 2008 - Object-Oriented Program-
ming. 22nd European Conference. Springer-Verlag, Berlin, Germany, pp. 490–515.

26

[42] Demsky, B., Sundaramurthy, S., 2010. Bristlecone: Language support for robust software applications. Software
Engineering, IEEE Transactions on PP (99), 1.

[43] DeVale, J., Koopman, P., 2001. Performance evaluation of exception handling in i/o libraries. In: Proceedings of
the International Conference on Dependable Systems and Networks, 1-4 July 2001. IEEE Computer Society, Los
Alamitos, CA, USA, pp. 519–524.

[44] Dingman, C. P., Marshall, J., Siewiorek, D. P., 1995. Measuring robustness of a fault tolerant aerospace system. In:
25th International Symposium on Fault-Tolerant Computing. Digest of Papers, 27-30 June 1995. IEEE Computer
Society, Los Alamitos, CA, USA, pp. 522–527.

[45] Dix, M., Hofmann, H. D., 2002. Automated software robustness testing - static and adaptive test case design meth-
ods. In: Proceedings of the 28th Euromicro Conference, 4-6 Sept. 2002. IEEE Computer Society, Los Alamitos,
CA, USA, pp. 62–66.

[46] Dolev, S., Gersten, O., 2010. A framework for robust active super tier systems. International Journal on Software
Tools for Technology Transfer 12 (Copyright 2011, The Institution of Engineering and Technology), 53–67.

[47] Dybå, T., Dingsoyr, T., 2008. Empirical studies of agile software development: A systematic review. Information
and Software Technology 50 (9-10), 833–859.

[48] Dybå, T., Kampenes, V., Sjöberg, D., 2006. A systematic review of statistical power in software engineering
experiments. Information and Software Technology 48 (8), 745–755.

[49] Engström, E., Runeson, P., Skoglund, M., 2010. A systematic review on regression test selection techniques.
Information and Software Technology 52 (1), 14–30.

[50] Fernandez, J., Mounier, L., Pachon, C., 2005. A model-based approach for robustness testing. Testing of Commu-
nicating Systems, 333–348.

[51] Fernsler, K., Koopman, P., 1999. Robustness testing of a distributed simulation backplane. In: Proceedings of the
10th International Symposium on Software Reliability Engineering, 1-4 Nov. 1999. IEEE Computer Society, Los
Alamitos, CA, USA, pp. 189–198.

[52] Fetzer, C., Zhen, X., 2002. An automated approach to increasing the robustness of c libraries. In: Proceedings of
the International Conference on Dependable Systems and Networks, 23-26 June 2002. IEEE Computer Society,
Los Alamitos, CA, USA, pp. 155–164.

[53] Forrester, J. E., Miller, B. P., 2000. An empirical study of the robustness of windows nt applications using random
testing. In: Proceedings of the 4th USENIX Windows Systems Symposium, 3-4 Aug. 2000. USENIX Assoc,
Berkeley, CA, USA, pp. 59–68.

[54] Frick, A., Goos, G., Neumann, R., Zimmermann, W., 2000. Construction of robust class hierarchies. Software -
Practice and Experience 30 (Copyright 2000, IEE), 481–543.

[55] Frick, A., Zimmer, W., Zimmermann, W., 1995. On the design of reliable libraries. In: Proceedings of the 17th
International Conference. TOOLS USA ’95. Technology of Object-Oriented Systems, 1995. Prentice Hall, En-
glewood Cliffs, NJ, USA, pp. 13–23.

[56] Fu, C., Milanova, A., Ryder, B. G., Wonnacott, D. G., 2005. Robustness testing of java server applications. IEEE
Transactions on Software Engineering 31 (Copyright 2005, IEE), 292–311.

[57] Fu, C., Ryder, B. G., Milanova, A., Wonnacott, D., 2004. Testing of java web services for robustness. In: ACM
SIGSOFT International Symposium on Software Testing and Analysis - ISSTA 2004, 11-14 July 2004. Vol. 29 of
Softw. Eng. Notes (USA). ACM, USA, pp. 23–34.

[58] Gabriel, R. P., Goldman, R., 2006. Conscientious software. Acm Sigplan Notices 41 (10), 433–450.
[59] Garousi, V., 2010. A genetic algorithm-based stress test requirements generator tool and its empirical evaluation.

IEEE Transactions on Software Engineering 36 (Copyright 2010, The Institution of Engineering and Technology),
778–97.

[60] Ghosh, A. K., Schmid, M., 1999. An approach to testing cots software for robustness to operating system excep-
tions and errors. In: Proceedings of the 10th International Symposium on Software Reliability Engineering, 1999.
pp. 166–174.

[61] Ghosh, A. K., Schmid, M., Hill, F., 1999. Wrapping windows NT software for robustness. In: Proceedings of the
29th Annual International Symposium on Fault-Tolerant Computing, 15-18 June 1999. IEEE Computer Society,
Los Alamitos, CA, USA, pp. 344–347.

[62] Ghosh, A. K., Schmid, M., Shah, V., 1998. Testing the robustness of Windows NT software. In: Proceedings of
the 9th International Symposium on Software Reliability Engineering, 4-7 Nov. 1998. IEEE Computer Society,
Los Alamitos, CA, USA, pp. 231–235.

[63] Groot, P., Van Harmelen, F., Teije, A. T., 2000. Torture tests: a quantitative analysis for the robustness of
knowledge-based systems. In: Proceedings of the 12th International Conference on Knowledge Management, 2-6
Oct. 2000. Vol. 1937 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Germany, pp. 403–418.

[64] Hameed, K., Williams, R., Smith, J., 2010. Separation of fault tolerance and non-functional concerns: Aspect
oriented patterns and evaluation. Journal of Software Engineering and Applications 3 (Copyright 2011, The Insti-
tution of Engineering and Technology), 303–11.

27

[65] Hanna, S., Munro, M., 2009. An approach for wsdl-based automated robustness testing of web services. Informa-
tion Systems Development, 493–504.

[66] Heimdahl, M. P. E., Czerny, B. J., 2000. On the analysis needs when verifying state-based software requirements:
an experience report. Science of Computer Programming 36 (1), 65–96.

[67] Henderson, M. I., Gill, K. F., 1996. Design of real-time concurrent software. Mechatronics 6 (Copyright 1996,
IEE), 209–225.

[68] Henzinger, T. A., 2008. Two challenges in embedded systems design: predictability and robustness. Philosoph-
ical Transactions of the Royal Society London, Series A (Mathematical, Physical and Engineering Sciences)
366 (Copyright 2009, The Institution of Engineering and Technology), 3727–3736.

[69] Holderfield, V. T., Huhns, M. N., 2003. A foundational analysis of software robustness using redundant agent col-
laboration. In: Agent Technologies, Infrastructures, Tools, and Applications for E-Services. NODe 2002 Agent-
Related Workshops. Revised Papers, 7-10 Oct. 2002. Vol. 2592. Springer-Verlag, Berlin, Germany, pp. 355–369.

[70] Huhns, M. N., 2001. Interaction-oriented software development. International Journal of Software Engineering
and Knowledge Engineering 11 (3), 259–279.

[71] Huhns, M. N., Holderfield, V. T., 2002. Robust software. IEEE Internet Computing 6 (Copyright 2002, IEE),
80–82.

[72] Huhns, M. N., Holderfield, V. T., Gutierrez, R. L. Z., 2003. Achieving software robustness via large-scale multi-
agent systems. In: Garcia, A., Lucena, C., Zambonelli, F., Omicini, A., Castro, J. (Eds.), Software Engineering
for Large-Scale Multi-Agent Systems - Research Issues and Practical Applications. Vol. 2603 of Lecture Notes in
Computer Science. pp. 199–215.

[73] Hui, D., Lui, S., 2006. Dependency algebra: a tool for designing robust real-time systems. In: Proceedings of
RTSS. 26th IEEE International Real-Time Systems Symposium, 5-8 Dec. 2005. IEEE Computer Society, Los
Alamitos, CA, USA, p. 11.

[74] Issarny, V., 1993. An exception-handling mechanism for parallel object-oriented programming: toward reusable,
robust distributed software. Journal of Object-Oriented Programming 6 (Copyright 1993, IEE), 29–40.

[75] Issarny, V., Benatre, J. P., 2001. Architecture-based exception handling. In: Proceedings of the 34th Annual
Hawaii International Conference on System Sciences, 2001. p. 10.

[76] Jaffe, M., Leveson, N., May 1989. Completeness, Robustness, And Safety In Real-time Software Requirements
Specification. In: Proceedings of 11th International Conference on Software Engineering. pp. 302–311.

[77] Jaffe, M. S., Leveson, N. G., Heimdahl, M. P. E., Melhart, B. E., 1991. Software requirements analysis for real-
time process-control systems. IEEE Transactions on Software Engineering 17 (Copyright 1991, IEE), 241–258.

[78] Jhumka, A., Hiller, M., Suri, N., 2002. An approach to specify and test component-based dependable software.
In: Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering, 2002. pp.
211–220.

[79] Jiang, S., Yan, D., 2005. Approach to testing java exception handling mechanism quickly. Mini-Micro Systems
26 (Copyright 2006, IEE), 1854–1857.

[80] Jiantao, P., Koopman, P., Yennun, H., Gruber, R., Mimi Ling, J., 2001. Robustness testing and hardening of
CORBA ORB implementations. In: Proceedings of the International Conference on Dependable Systems and
Networks, 1-4 July 2001. IEEE Computer Society, Los Alamitos, CA, USA, pp. 141–150.

[81] Johansson, A., Suri, N., Murphy, B., 2007. On the impact of injection triggers for os robustness evaluation. In:
Software Reliability, 2007. ISSRE ’07. The 18th IEEE International Symposium on. pp. 127–126.

[82] Jorgensen, M., Shepperd, M., 2007. A systematic review of software development cost estimation studies. IEEE
Transactions on Software Engineering 33 (1), 33–53.

[83] Jwo, J. S., Cheng, H. M., 2001. A robust framework for building java applications. In: Computer Science and
Technology in New Century. International Academic Publishers LTD, pp. 506–510.

[84] Kaksonen, R., Laakso, M., Takanen, A., 2001. Software security assessment through specification mutations and
fault injection. In: Steinmetz, R., Dittman, J., Steinebach, M. (Eds.), Communications and Multimedia Security
Issues of the New Century. Vol. 64 of International Federation for Information Processing. Kluwer Academic
Publishers, pp. 174–183.

[85] Kanoun, K., Crouzet, Y., Kalakech, A., Rugina, A. E., Rumeau, P., 2005. Benchmarking the dependability of
windows and linux using postmark/spl trade/ workloads. In: Software Reliability Engineering, 2005. ISSRE 2005.
16th IEEE International Symposium on. pp. 10–20.

[86] Kashmirian, J., Padgham, L., 2000. Relative robustness: an empirical investigation of behaviour based and plan
based paradigms as environmental conditions change. In: Foundations of Intelligent Systems. 12th International
Symposium, ISMIS 200, 11-14 Oct. 2000. Vol. 1932 of Lecture Notes in Artificial Intelligence. Springer Verlag,
Berlin, Germany, pp. 205–215.

[87] Keane, J., Ellman, T., 1996. Knowledge-based re-engineering of legacy programs for robustness in automated
design. In: Proceedings of the 11th Knowledge Based Software Engineering Conference, 25-28 Sept. 1996. IEEE
Computer Society, Los Alamitos, CA, USA, pp. 104–113.

28

[88] Khedri, N., Rahgozar, M., Hashemi, M., 2006. A study on using n-pattern chains of design patterns based on soft-
ware quality metrics. In: Ardil, C. (Ed.), Proceedings of World Academy of Science, Engineering and Technology.
Vol. 14. WORLD ACAD SCI, ENG & TECH-WASET, pp. 354–359.

[89] Kitchenham, B., 2004. Procedures for performing systematic reviews. Keele, UK, Keele University 33.
[90] Kitchenham, B., Charters, S., 2007. Guidelines for Performing Systematic Literature Reviews in Software En-

gineering, Keele University. Tech. Rep. UK EBSE-2007-1, Software Engineering Group, School of Computer
Science and Mathematics, Keele University, and Department of Computer Science, University of Durham.

[91] Kitchenham, B., Dyba, T., Jorgensen, M., 2004. Evidence-based software engineering. In: Proceedings of the
26th international conference on software engineering. IEEE Computer Society, pp. 273–281.

[92] Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S., 2009. Systematic literature
reviews in software engineering-A systematic literature review. Information and Software Technology 51 (1),
7–15.

[93] Koopman, P., 1999. Toward a scalable method for quantifying aspects of fault tolerance, software assurance, and
computer security. In: Proceedings of the Computer Security, Dependability, and Assurance: From Needs to
Solutions, 7-9 July 1998 & 11-13 November 1998. IEEE Computer Society, Los Alamitos, CA, USA, pp.
103–131.

[94] Koopman, P., DeVale, J., 2000. The exception handling effectiveness of posix operating systems. Software Engi-
neering, IEEE Transactions on 26 (9), 837–848.

[95] Koopman, P., Sung, J., Dingman, C., Siewiorek, D., Marz, T., 1997. Comparing operating systems using robust-
ness benchmarks. In: Proceedings of the 16th Symposium on Reliable Distributed Systems, 1997. pp. 72–79.

[96] Kovi, A., Micskei, Z., 2010. Robustness testing of standard specifications-based ha middleware. In: Proceedings
of 2010 30th International Conference on Distributed Computing Systems Workshops (ICDCS 2010 Workshops),
21-25 June 2010. IEEE Computer Society, Los Alamitos, CA, USA, pp. 302–6.

[97] Kropp, N. P., Koopman, P. J., Siewiorek, D. P., 1998. Automated robustness testing of off-the-shelf software
components. In: Proceedings of the 28th International Symposium on Fault Tolerant Computing, 23-25 June
1998. IEEE Computer Society, Los Alamitos, CA, USA, pp. 230–239.

[98] Kulkarni, D., Tripathi, A., 2010. A framework for programming robust context-aware applications. IEEE Trans-
actions on Software Engineering 36 (Copyright 2010, The Institution of Engineering and Technology), 184–197.

[99] Laprie, J., Avizienis, A., Kopetz, H., 1992. Dependability: Basic concepts and terminology. Springer-Verlag New
York, Inc. Secaucus, NJ, USA.

[100] Laranjeiro, N., Canelas, S., Vieira, M., 2008. wsrbench: an on-line tool for robustness benchmarking. In: 2008
IEEE International Conference on Services Computing (SCC), 7-11 July 2008. Vol. 2. IEEE, Piscataway, NJ,
USA, pp. 187–194.

[101] Laranjeiro, N., Oliveira, R., Vieira, M., 2010. Applying text classification algorithms in web services robustness
testing. In: Proceedings of 2010 29th IEEE International Symposium on Reliable Distributed Systems (SRDS),
31 Oct.-3 Nov. 2010. IEEE Computer Society, Los Alamitos, CA, USA, pp. 255–64.

[102] Laranjeiro, N., Vieira, M., 2009. Extending test-driven development for robust web services. In: Dependability,
2009. DEPEND ’09. 2nd International Conference on. pp. 122–127.

[103] Lei, B., Li, X., Liu, Z., Morisset, C., Stolz, V., 2010. Robustness testing for software components. Science of
Computer Programming 75 (Copyright 2011, The Institution of Engineering and Technology), 879–97.

[104] Lei, B., Liu, Z., Morisset, C., Xuandong, L., 2010. State based robustness testing for components. Electronic
Notes in Theoretical Computer Science 260 (Copyright 2010, The Institution of Engineering and Technology),
173–88.

[105] Liggesmerer, P., Rothfelder, M., 1998. System safety improvement by automated software robustness evaluation.
In: Proceedings of TCS98: 15th International Conference and Exposition on Testing Computer Software, 8-12
June 1998. ACM, New York, NY, USA, pp. 71–77.

[106] Lisboa, L., Garcia, V., Lucrédio, D., de Almeida, E., de Lemos Meira, S., de Mattos Fortes, R., 2010. A systematic
review of domain analysis tools. Information and Software Technology 52 (1), 1–13.

[107] Liu, H., Jiang, J., 2006. A robustness testing platform for file system. High Technology Letters (English Language
Edition) 12 (Copyright 2006, The Institution of Engineering and Technology), 23–27.

[108] Lu, C., Fabre, J. C., Killijian, M. O., 2009. Robustness of modular multi-layered software in the automotive
domain: a wrapping-based approach. In: 2009 IEEE 14th International Conference on Emerging Technologies
& Factory Automation. ETFA 2009, 22-25 Sept. 2009. IEEE, Piscataway, NJ, USA, p. 8.

[109] Luo, X., Ji, W., Chao, L., 2009. TTCN-3 based robustness test generation and automation. In: Proceedings of the
2009 International Conference on Information Technology and Computer Science (ITCS 2009), 25-26 July 2009.
Vol. 2. IEEE, Piscataway, NJ, USA, pp. 120–125.

[110] M. N. Huhns, 2000. Agent teams: building and implementing software. IEEE Internet Computing 4 (Copyright
2000, IEE), 93–95.

[111] Majumdar, R., Saha, I., 2009. Symbolic robustness analysis. In: Proceedings of the 2009 30th IEEE Real-Time

29

Systems Symposium (RTSS 2009), 1-4 Dec. 2009. IEEE, Piscataway, NJ, USA, pp. 355–363.
[112] Martin, E., Basu, S., Tao, X., 2007. WebSob: a tool for robustness testing of Web services. In: 29th International

Conference on Software Engineering (ICSE’07 Companion), 20-26 May 2007. IEEE, Piscataway, NJ, USA, pp.
67–68.

[113] Maxion, R. A., deChambeau, A. L., 1995. Dependability at the user interface. In: The 25th International Sympo-
sium on Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers. pp. 528–535.

[114] Maxion, R. A., Olszewski, R. T., 1998. Improving software robustness with dependability cases. In: Proceedings
of the 28th International Symposium on Fault Tolerant Computing, 23-25 June 1998. IEEE Computer Society,
Los Alamitos, CA, USA, pp. 346–355.

[115] Mays, D., Leblanc, R. J., J., 2002. The CycleFree methodology: a simple approach to building reliable, robust,
real-time systems. In: Proceedings of the 24th International Conference on Software Engineering. ICSE 2002,
19-25 May 2002. ACM, New York, NY, USA, pp. 567–575.

[116] Mendes, N., Duraes, J., Madeira, H., 2010. Evaluating and comparing the impact of software faults on web
servers. In: Dependable Computing Conference (EDCC), 2010 European. pp. 33–42.

[117] Micskei, Z., Majzik, I., Tam, F., 2007. Comparing robustness of AIS-based middleware implementations. In:
Service Availability. Proceedings of the 4th International Service Availability. 21-22 May 2007. Vol. 4526 of
Lecture Notes in Computer Science. Springer, Berlin, Germany, pp. 20–30.

[118] Miller, B., Koski, D., Lee, C., Maganty, V., Murthy, R., Natarajan, A., Steidl, J., 1995. Fuzz revisited: A re-
examination of the reliability of UNIX utilities and services. Tech. rep.

[119] Miller, B. P., Fredriksen, L., So, B., 1990. An empirical study of the reliability of unix utilities. Commun. ACM
33 (12), 32–44.

[120] Moraes, R., Barbosa, R., Duraes, J., Mendes, N., Martins, E., Madeira, H., 2006. Injection of faults at component
interfaces and inside the component code: are they equivalent? In: Proceedings of the 6th European Dependable
Computing Conference, 18-20 Oct. 2006. IEEE Computer Society, Los Alamitos, CA, USA, p. 10.

[121] Moses, J., Jackson, K., 1991. Ensuring robustness and reliability of object oriented software using mascot 3. In:
Proceedings of the 2nd International Conference Reliability and Robustness of Engineering Software II. 22-24
April 1991. Comput. Mech. Publications, Southampton, UK, pp. 19–34.

[122] Mukherjee, A., Siewiorek, D. P., 1997. Measuring software dependability by robustness benchmarking. Software
Engineering, IEEE Transactions on 23 (6), 366–378.

[123] Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J. M., 2003. Requirements by contracts allow automated system
testing. In: 14th International Symposium on Software Reliability Engineering, 17-20 Nov. 2003. IEEE Computer
Society, Los Alamitos, CA, USA, pp. 85–96.

[124] Neishaburi, M. H., Daneshtalab, M., Kakoee, M. R., Safari, S., 2007. Improving Robustness of Real-Time Oper-
ating Systems (RTOS) Services Related to Soft-Errors. In: Computer Systems and Applications, 2007. AICCSA
’07. IEEE/ACS International Conference on. pp. 528–534.

[125] Neishaburi, M. H., Kakoee, M. R., Daneshtalab, M., Safari, S., Navabi, Z., 2007. A hw/sw architecture to reduce
the effects of soft-errors in real-time operating system services. In: Proceedings of the 2007 IEEE Workshop on
Design and Diagnostics of Electronic Circuits and Systems, 11-13 April 2007. IEEE, Piscataway, NJ, USA, pp.
247–250.

[126] Olah, J., Majzik, I., 2009. A model based framework for specifying and executing fault injection experiments. In:
The 4th International Conference on Dependability of Computer Systems, 2009. DepCos-RELCOMEX ’09. pp.
107–114.

[127] P. Koopman and J. DeVale, 1999. Comparing the robustness of posix operating systems. In: The 29th Annual
International Symposium on Fault-Tolerant Computing, 1999. Digest of Papers. pp. 30–37.

[128] Pan, J., Koopman, P., Siewiorek, D., 1999. A dimensionality model approach to testing and improving software
robustness. In: Proceedings of the 1999 IEEE AUTOTESTCON, 30 Aug.-2 Sept. 1999. IEEE, Piscataway, NJ,
USA, pp. 493–501.

[129] Pardo, J., Campelo, J. C., Serrano, J. J., 2009. Non-intrusive tool for verifying COTS components in embedded
systems. In: 2009 International Conference on Embedded Systems & Applications. ESA 2009, 13-16 July
2009. CSREA Press, Las Vegas, NV, USA, pp. 274–279.

[130] Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping studies in software engineering. In:
12th International Conference on Evaluation and Assessment in Software Engineering. pp. 71–80.

[131] Popovic, M., Kovacevic, J., 2007. A statistical approach to model-based robustness testing. In: 14th Annual IEEE
International Conference and Workshops on the Engineering of Computer-Based Systems, 2007. ECBS ’07. pp.
485–494.

[132] Preston-Thomas, P., Paterson, R., 1991. A technique for improving software robustness to failure. In: ICC 91. In-
ternational Conference on Communications Conference Record (Cat. No.91CH2984-3), 23-26 June 1991. IEEE,
New York, NY, USA, pp. 1159–1163.

[133] Rajanikanth, K. N., Narahari, Y., Prasad, N. N. S. S. R. K., Rao, R. S., 2003. A robust and scalable architecture for

30

airborne radar simulation. In: IEEE TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific
Region, 15-17 Oct. 2003. Vol. 1. Allied Publishers Pvt. Ltd, New Delhi, India, pp. 173–177.

[134] Rajesh, T., Huhns, M. N., 2005. Multiagent reputation management to achieve robust software using redundancy.
In: Intelligent Agent Technology, IEEE/WIC/ACM International Conference on. pp. 386–392.

[135] Robertson, P., Williams, B., 2006. Automatic recovery from software failure. Communications of the ACM
49 (Copyright 2006, The Institution of Engineering and Technology), 41–47.

[136] Robillard, M. P., Murphy, G. C., 1999. Analysing exception flow in javatm programs. In: ESEC/FSE’99. 7th Eu-
ropean Software Engineering Conference. Held Jointly with 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, 6-10 Sept. 1999. Vol. 24 of Softw. Eng. Notes (USA). ACM, USA, pp. 322–327.

[137] Rollet, A., Saad-Khorchef, F., 2007. A formal approach to test the robustness of embedded systems using be-
haviour. In: 2007 5th International Conference on Software Engineering Research, Management and Applications,
20-22 Aug. 2007. IEEE, Piscataway, NJ, USA, pp. 667–674.

[138] Ruiz, J. C., Pardo, J., Campelo, J. C., Gil, P., 2005. On-chip debugging-based fault emulation for robustness
evaluation of embedded software components. In: Proceedings of the 11th Pacific Rim International Symposium
on Dependable Computing, 2005. p. 8.

[139] S. Hanna and M. Munro, 2008. Fault-based web services testing. In: The 5th International Conference on Infor-
mation Technology: New Generations, 2008. ITNG 2008. pp. 471–476.

[140] Saad-Khorchef, F., Rollet, A., Castanet, R., 2007. A framework and a tool for robustness testing of communicating
software. In: Applied Computing 2007. The 22nd Annual ACM Symposium on Applied Computing, 11-15 March
2007. Vol. 2. ACM, New York, NY, USA, pp. 1461–1466.

[141] Santana, F. G., Gonzalez, J. M., Espino, J. M. S., Calero, J. C. R., 2001. Building robust applications by reusing
non-robust legacy software. In: Reliable Software Technologies - Ada-Europe 2001. 6th Ada-Europe Interna-
tional Conference on Reliable Software Technologies, 14-18 May 2001. Vol. 2043 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, pp. 148–159.

[142] Sarbu, C., Johansson, A., Fraikin, F., Suri, N., 2006. Improving robustness testing of COTS OS extensions.
In: Penkler, D., Reitenspiess, M., Tam, F. (Eds.), Service Availability. Vol. 4328 of Lecture Notes in Computer
Science. Springer-Verlag Berlin, pp. 120–139.

[143] Schmid, M., Ghosh, A., Hill, F., 2000. Techniques for evaluating the robustness of windows nt software. In:
Proceedings of DARPA Information Survivability Conference and Exposition, 2000. DISCEX ’00. Vol. 2. pp.
347–360.

[144] Schmidt, D. C., 1999. Wrapper facade: a structural pattern for encapsulated functions within classes. C++ Report
11 (Copyright 1999, IEE), 40–41.

[145] Seung Hak, K., Hyeon Soo, K., 2009. Robustness testing framework for web services composition. In: 2009 IEEE
Asia-Pacific Services Computing Conference (APSCC 2009), 7-11 Dec. 2009. IEEE, Piscataway, NJ, USA, pp.
319–324.

[146] Shahrokni, A., Feldt, R., 2010. Towards a Framework for Specifying Software Robustness Requirements Based
on Patterns. Requirements Engineering: Foundation for Software Quality, 79–84.

[147] Shahrokni, A., Feldt, R., Petterson, F., Bäck, A., 2009. Robustness verification challenges in automotive telematics
software. In: SEKE. pp. 460–465.

[148] Shelton, C. P., Koopman, P., Devale, K., 2000. Robustness testing of the Microsoft Win32 API. In: Proceedings of
the International Conference on Dependable Systems and Networks, 25-28 June 2000. IEEE Computer Society,
Los Alamitos, CA, USA, pp. 261–270.

[149] Shin, M. E., 2005. Self-healing components in robust software architecture for concurrent and distributed systems.
Science of Computer Programming 57 (1), 27–44.

[150] Shu, X., Sheng, L., Xiangrong, W., Lijun, D., 2003. Fault-oriented software robustness assessment for multicast
protocols. In: Proceedings of the 2nd IEEE International Symposium on Network Computing and Applications.
NCA 2003, 16-18 April 2003. Proceedings of the 2nd IEEE International Symposium on Network Computing
and Applications. NCA 2003. IEEE Computer Society, Los Alamitos, CA, USA, pp. 223–230.

[151] Shyamasundar, R. K., 1994. Design of software for safety critical systems. Sadhana 19 (Copyright 1995, IEE),
941–969.

[152] Siewiorek, D. P., Hudak, J. J., Suh, B. H., Segal, Z., 1993. Development of a benchmark to measure system
robustness. In: FTCS-23 The 23rd International Symposium on Fault-Tolerant Computing, 22-24 June 1993.
IEEE Computer Society, Los Alamitos, CA, USA, pp. 88–97.

[153] Sloan, J., Kesler, D., Kumar, R., Rahimi, A., 2010. A numerical optimization-based methodology for application
robustification: Transforming applications for error tolerance. In: 2010 IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 28 June-1 July 2010. IEEE, Piscataway, NJ, USA, pp. 161–70.

[154] Susskraut, M., Fetzer, C., 2007. Robustness and security hardening of COTS software libraries. In: 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07), 25-28 June 2007. IEEE,
Piscataway, NJ, USA, pp. 61–71.

31

[155] Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B., Shafique, M. U., 2010. A systematic review on
strategic release planning models. Information and Software Technology 52 (3), 237–248.

[156] Tao, X., Acharya, M., Thummalapenta, S., Taneja, K., 2008. Improving software reliability and productivity via
mining program source code. In: Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on. pp. 1–5.

[157] Tarhini, A., Rollet, A., Fouchal, H., 2004. A pragmatic approach for testing robustness on real-time component
based systems. In: Book of Abstracts. ACS/IEEE International Conference on Computer Systems and Applica-
tions, 3-6 Jan. 2005. IEEE, Piscataway, NJ, USA, pp. 143–150.

[158] Tsanchi, L., Chi-Ming, C., Horgan, B., Lai, M. Y., Wang, S. Y., 1994. A software fault insertion testing method-
ology for improving the robustness of telecommunications systems. In: IEEE International Conference on Com-
munications, 1994. ICC ’94, SUPERCOMM/ICC ’94, Conference Record, ’Serving Humanity Through Commu-
nications.’. pp. 1767–1771.

[159] Twala, B., Cartwright, M., Shepperd, M., 2005. Comparison of various methods for handling incomplete data
in software engineering databases. In: 2005 International Symposium on Empirical Software Engineering, 17-18
Nov. 2005. IEEE, Piscataway, NJ, USA, p. 10.

[160] V. Issarny, 1992. Exception handling mechanism for parallel object-oriented programming. towards the design of
reusable and robust distributed software. Tech. rep., Inst. Nat. Recherche Inf. Autom., Le Chesnay, France.

[161] Verde, L., Amato, F., Canzolino, P., 2000. A software tool for robustness analysis in plant parameters space
(roban). Computer-Aided Control System Design, 2000. CACSD 2000. IEEE International Symposium on, 196–
201.

[162] Vieira, M., Laranjeiro, N., Madeira, H., 2007. Assessing robustness of web-services infrastructures. In: Depend-
able Systems and Networks, 2007. DSN ’07. 37th Annual IEEE/IFIP International Conference on. pp. 131–136.

[163] Vieira, M., Laranjeiro, N., Madeira, H., 2007. Benchmarking the robustness of web services. In: Dependable
Computing, 2007. PRDC 2007. 13th Pacific Rim International Symposium on. pp. 322–329.

[164] Voas, E., Charron, F., McGraw, G., Miller, K., Friedman, M., 1997. Predicting how badly good software can
behave. IEEE Software 14 (Copyright 1997, IEE), 73–83.

[165] Voas, J., Miller, K., 1996. Interface robustness for COTS-based systems. In: IEE Colloquium on COTS and Safety
Critical Systems (Digest No.1997/103), 28 Jan. 1997. IEE, London, UK, p. 7.

[166] Waydo, S., Dunbar, W. B., Klavins, E., 2003. Toward feedback stabilization of faulty software systems: a case
study. In: 42nd IEEE International Conference on Decision and Control, 9-12 Dec. 2003. Vol. 1. IEEE, Piscataway,
NJ, USA, pp. 738–743.

[167] Wei Hoo, C., 2007. RPB in Software Testing. In: Computing in the Global Information Technology, 2007. ICCGI
2007. International Multi-Conference on. pp. 8–8.

[168] Yeh, C. H., Parhami, B., Varavrigos, E. A., Varvarigou, T. A., 2001. RACE: a software-based fault tolerance
scheme for systematically transforming ordinary algorithms to robust algorithms. In: Proceedings of the 15th
International Parallel and Distributed Processing Symposium. p. 6.

[169] Zamli, K. Z., Hassan, M. D. A., Isa, N. A. M., Azizan, S. N., 2006. An automated software fault injection tool for
robustness assessment of java cots. In: 2006 International Conference on Computing & Informatics. ICOCI 2006,
6-8 June 2006. IEEE, Piscataway, NJ, USA, p. 6.

32

