
Supporting Software Decision Meetings: Heatmaps
for Visualising Test and Code Measurements

Robert Feldt, Miroslaw Staron
Computer Science and Engineering

Chalmers & University of Gothenburg, Sweden
Email: robert.feldt@chalmers.se, miroslaw.staron@gu.se

Erika Hult, Thomas Liljegren
RUAG Space

Gothenburg, Sweden
Email: (erika.hult, thomas.liljegren)@ruag.com

Abstract—To achieve software quality it is critical to quickly
understand the current test status, its changes over time as
well as its relation to source code changes. However, even if
this information is available in test logs and code repositories
it is seldomly put to good use in supporting decision processes
in software development. The amount of information is often
large, is time consuming to extract and hard to monitor. This
case study shows how visualisation and correlation between
software measurements can support improvement discussions.
In particular, simple heatmaps were found to be effective to
visualize and monitor changes and identify recurring patterns
in the development of a space-bourn, embedded control system.
Statistical analysis quantified the correlation between different
sources of development data and heatmaps then effectively
focused the attention of stakeholders to importants parts of the
system. Here the visual analysis was focused on post-project,
historical data but we discuss how early identification based on
dynamic data analysis could support more effective analysis,
planning and execution of quality assurance. Based on our
findings we state requirements on such an online, visual analysis
system and present a prototype implementation that can help
software measurements better support value-based decisions in
software development.

I. INTRODUCTION

To control the stability and quality of software products dur-
ing their development it is important with effective monitoring
of both test outcomes, test progress as well as source code
changes. Several previous studies have shown the importance
of including change metrics in the prediction of faults and
fault proneness [1], [2]. These code changes have a potential
of directing test efforts or pointing developers to places in
source code which might be risky [3] - risks which might
lead to increased costs/effort. But the information also need
to flow in the opposite direction; test information need to be
connected back to the source code to support fault localization,
debugging and improvement efforts [4], [5].

Identifying source code changes which might impact inte-
gration processes in software development projects is usually
done a posteriori during post-mortem analyses or as a response
to problems with quality, functionality or project schedule.
Changes in source code are a normal phenomenon in software
engineering - as the source code is expected to grow and
improve - so it is hard to filter out the normal changes from
the unexpected change patterns like defect-fixes. However, if
complemented with the visualization of results of testing, these

change patterns can be used as early warning system for qual-
ity risks. Combining multiple data streams, visualising them
and allowing interaction with the visualisations has also been
found helpful in ongoing research into visual analytics [6].

For software quality we have found three elements to be
important: source code with its changes, test progress with
the outcome of executing test cases, and changes in test cases
themselves [7], [8]. The last element needs to be considered
as software engineering practices allow updates of test cases
during the development process due to such aspects as defects
in test code or updated requirements. Therefore discussions
should investigate all three sources of data. Preferably these
three elements should be visualized together to allow parallel
analyses and visual coupling of causes and effects.

Previous research in this area has focused on small-scale
experiements, often not in actual industrial projects. In this
paper we present a case study from RUAG Space AB in
Gothenburg, Sweden with the goal to identify early warning
indicators which can inform stakeholders about potential
problems with unexpected costs. The results of the case study
showed that a main cost and time driver is integration efforts
and defects related to integration of software with the hardware
platform. By using heatmaps we were able to show which
source code elements have potentially the most significant
impact on the integration process. They also found patterns in
defect occurence which relates to inefficiencies in the testing
processes. The heatmaps have been found to be very effective
to focus discussions on the most relevant elements of source
code and test progress without loosing the overall picture.

This paper is structured as follows. Section 2 presents the
related work in the area of early warning systems for software
development, heatmaps and integration/test planning. Section
3 presents the concepts of code churns and heatmaps. Section
4 presents the design of our case study and Sectoin 5 presents
the results from it. Section 6 discusses threats to the validity
of our results and Section 7 presents the conclusions from our
work.

II. RELATED WORK

Ball and Nagappan [2] have shown that large change bursts
and relative code churns (described in section III-A) are good
predictors of reliability of large software products (evaluated
on two software products: Microsoft Windows Vista and



Eclipse). Although the results were obtained by studying large
products, we decided to adopt this method and evaluate it for
small products at RUAG Space in the domain of embedded
software.

Our intention was to build something similar to CRANE
toolset [9] where data from a number of sources was used to
make decisions about proposed fixes to the post-release defects
in Microsoft Windows Vista operating system. Providing a
similar system for pre-release defects with the focus on
integration problems and cost control would allow teams to
quickly identify places in the code which should be tested
more rigorously. Our goal was in line with the work of
Buse and Zimmermann [10] who intend to create a tool for
supporting software engineers in daily decision making - based
on a survey of 110 developers from Microsoft.

In our previous research we identified that Agile prediction
of trends in defect inflows is appreciated by managers in
software development [8]. However, the predictions which
yielded best results in terms of accuracy were based on the
existence of defects - in other words assumed that there
are defects to start with. In this research we intend to use
source code changes and test case changes profiles as means
of forecasting defects/integration problems. Examples of this
kind approach for large systems could be found in [11], [12].

In our previous work we have investigated the use of early
warning systems at Ericsson with the purpose of identifying,
monitoring and warning about potential bottlenecks in large
Agile+Lean software development projects [13]. The early
warning system at Ericsson was aimed at monitoring the work
flow in software development program and notify the program
management of building queues and limitations of the overall
capacity of the system. The most relevant aspect was the use
of heterogeneous metrics related only through process flows.
This concept was also used in this research: the collected
metrics are related to each other through process, not through
mathematical correlations.

Buse and Zimmerman [14] conducted a survey with 110
designers, architects and project managers at Microsoft with
the goal to explore information needs for software analytics
at a large software development company. Among a number
of insights regarding the need to simulate/predict software
development outcomes, the survey showed that metrics like
code clones, bug and failure anlyses and code changes are
among the top information needs.

This strand of research is part of a larger trend where
ideas and tools from Visual Analytics is applied on software
and its related data. An overview of recent work can be
found in Reniers et al [6]. Visual Analytics (VA) integrates
data collection and statistical analysis with visualisation and
interaction to support sense and decision making. The majority
of existing Software VA (SVA) papers focus on source code
and studies changes either at the file or project level. There
is a lack of results that combine source code with test related
data for support of more complex decision making processes.

III. THEORETICAL BACKGROUND

In order to address our research problem we combined
two concepts – code churning from Microsoft Research and
heatmaps as a means of visualization of large quantities of
three dimensional data.

A. Code churn

In our work we use the concepts of code churn and change
bursts as the metrics for identifying patterns in source code.
These concepts have been defined and evaluated by Microsoft
Research [2]. Code churns are defined as source code which
was added, changed or deleted between two versions of
software unit over time. In their original work Nagappan and
Ball [2] have identified that relative code churns (i.e. code
churns normalized by the size of software unit) are very good
predictors of software reliability. Those parts of Microsoft
Windows Vista and Eclipse platform which exposed large
change bursts (i.e. frequent and large code changes) were
found to carry a lot of risk to reliability.

In Microsoft’s case the main predictor was change burst,
which is a set of consecutive changes of a specified magnitude.
This concept had two parameters: code churn and number of
consecutive changes, whose values were found empirically.

As code churns were found to be good predictors of
reliability, we use this concept as a predictor of problems
with integration as unreliable software is more likely to expose
problems under testing than the reliable software.

B. Heatmaps

The origins of this data visualization format can be traced
back to the 19th century as described by Wilkinson [15].
Heatmaps are most suited for visualizing large sets of data
with at least three dimensions. Given two dimensions of the
data mapped to the rows and columns of a square graphics
canvas each cell is then coloured according to the size of
an indicator or metric or to show the strength of a statistical
effect. This can help show clusters or patterns in the data over
time or in different areas of the data. An example heat map
is presented in Figure 1 which shows code churns for one
project by mapping each file to a separate row, time (here at
the resolution of weeks) to columns and the cell colour set
according to the churn for that file at the given week.

Voinea et al used a heat map to visualize code changes
in software projects on both file and project level [16]. For
example, at the file level, each line of code is given a coloured,
horizontal line indicating its change status for each version of
the file. This creates a colour map as the versions progress
to the right and lines of code down on the visual 2D map.
Different visualisation choices both when it comes to the
colours involved but also the scaling used made it more
or less effective to analyse different types of source code
evolution [16].

At the project level, Voinea et al plotted each unique file
on separate horizontal lines and used colours to map, for
example, authors involved in changes. The heatmap visual-
izations were also augmented with software metrics or linked



to code fragments shown along the axis of the heatmaps
themselves. The implemented tool also supported interaction
with the visualization to filter based on time or entity values
and to select new metrics to correlate with. In a few, small
case studies the tool was shown to support ‘a quick assess-
ment of the important activities and artifacts produced during
development’ and could also help detect larger architectural
changes when multiple files was added or changed at the same
time [16]. The users of the tool involved in the case studies
were surprised by the ease with which they could identify the
major events and contributors without any prior knowledge of
the investigated source code.

Note that heatmaps is but one of the many possible vi-
sualisation techniques that can be employed for large data
sets. Alternatives such as table lenses, hierarchically bundled
edges and treemaps can provide even more information in
a limited space and are included in recent SVA tools [6].
However, in our initial talks with company staff heatmaps
were intuitively and quickly understood while more complex
graphical solutions would require more explanation. This study
thus focuses on the use of simpler and more traditional
visualization tools.

IV. DESIGN OF THE CASE STUDY

The case study designed to address our research question
was conducted in close cooperation with managers and en-
gineers at RUAG Space AB in Gothenburg, Sweden. This
business unit of a larger, multi-national corporation develops
hardware and software for various space systems, e.g. satel-
lites. Below we describe the industrial context in more detail
and present the different phases of the case study.

A. Context

The context of this case study is RUAG Space AB (RUAG) a
company based in Gothenburg, Sweden. RUAG was formerly
known as SAAB Space AB but was acquired by the Swiss
company RUAG Space in 2008. They have a long experience
in the design, development and delivery of both hardware and
software for computer and data handling products for space
applications. The main product areas are data management sys-
tems, fault-tolerant computers and processor products, payload
control computers, and small mass memories.

The software developed by RUAG for these computers is
in the range from small boot software to full application soft-
ware, but the main focus is on embedded, real-time software
closely integrated with custom hardware also developed in-
house. The software development process used is based on the
ECSS standards, mixed with an integration driven development
approach. In previous research collaborations with RUAG we
have studied how to improve software development and make
quality assurance more efficient within the quite strict process
constraints of the ECSS standard [7], [17].

RUAG employs in total 360 people, of which about 35 work
in the software unit. Typically up to five projects are developed
simultaneously in varying team sizes of up to 10 people per
team. The software is developed mainly in C but with some

low-level parts written in assembler. The development process
being used is incremental with between 12 to 25 increments
per project. Initial increments are focused on base functionality
while later increments integrates functionality into larger sub-
systems and sets of features. Since the hardware is commonly
developed in parallel with the software the project planning,
and in particular the distribution of functionality over the
increments, is heavily influenced by when different hardware
components will be available and ready for testing.

B. Case Study Phases

We designed the case study to follow a collaborative
research approach, proven successful in our other research
projects [18]. The process assumed that researchers from
academia collaborated closely with practitioners in defining
the problem, proposing/evaluating solutions and analyzing
results. In detail, the different phases of the case study were:

1) Workshop with practitioners to understand the problem.
The workshop resulted in defining the problem to be
a need for predicting test effort based on source code,
effort-related project data and test progress.

2) One-on-one interviews with a project manager and a
technical leader to understand the software develop-
ment and project monitoring practices at the company.
The interviews established a common platform to start
analyzing numerical data from the following sources:
financial/effort reporting databases, test rigs, and source
code repository.

3) Data extraction and document analysis from past
project. In order to perform correlation analyses and
to be able to understand cause-effect relationships we
analyzed a past project. The project was representative
for the projects at the company in terms of size and
complexity of the problem, source code, or test base.
The software development process followed by the past
project was the standard, integration-driven process with
multiple increments.

4) Data visualization and analyses. We visualized the
data from source code repositories and test rigs using
heatmaps, whereas we used standard line-plots for the
financial data. The practitioners at the company assisted
the researchers in understanding and filtering the data
to avoid finding random dependencies in the data. The
analyses should lead to identifying indicators that can
foretell problems with late and large test effort.

5) Workshop with practitioners to evaluate indicators and
identify the ”best” way to visualize them. The discus-
sions in the workshop showed that source code changes
have an impact on test progress and that test progress
and integration effort are significantly correlated. The
discussions also showed that heatmaps are an efficient
way of communicating the information within the com-
pany.

6) Prototype online analysis system. The evaluated in-
dicators and visualization methods were used in a new
project by two master students (of software engineering)



whose task was to build a measurement system for
monitoring and controlling of software development
projects [19].

The workshops were held at multiple times throughout this
project and involved between 3-5 engineers having different
roles throughout the company, from managers and test leaders
to supporting roles. Interviews were held with two researchers
present and one interviewee. The interviews were semi-
structured where the researchers had a set of pre-defined topics
or questions that were probed but where further detailing
and question were flexibly adapted based on the role and
experience of the interviewee and their previous answers. The
researchers also had continuous contact with the integration
lead while sitting at the company. The whole project team had
continuous steering group meetings throughout the project.

V. RESULTS AND ANALYSIS

The results and analysis presented in this section are
structured into three parts - initial feasability analysis and
refinement of industrial requirements, data visualisations and
analysis, and the design of a prototype early warning system.
The first part corresponds to the explorative part of our study
(i.e. phases 1-3 of the case study as described in IV-B) while
the latter parts describes the detailed analysis (phases 4-5) and
the prototype system (phase 6) developed at the company. The
latter part also discuss the impact on the company’s operation.

A. Initial analysis and data extraction

In the first two steps of the research process presented in
section IV-B we narrowed the research problem to mining
multiple data sources to build an early warning system to
forecast large integration and test costs at the company. The
workshops resulted in narrowing the problem and project
focus to the most important areas of software development.
In discussions staff agreed that:

• the major cost driver in late software development phases
is the integration effort which is frequently high,

• the major integration effort driver is the fact that there
are problems with failing test cases and the need to
fix defects before progressing with the test and thus
integration process, and

• the potential reason for failing test cases could be late
access to hardware and the resulting late changes to the
source code of the product.

Since the software and hardware is developed in parallel
by two different departments at the company the integration
activities are necessarily in focus. Furthermore, for depend-
ability reasons the software development standards in use in
the space industry requires having a separate test team [7].
Even though the departments have done considerable unit
level testing and also tested the integration of their respective
components internally, full system integration when running
the system tests is complex enough that many problems will
not surface until this time. To address this situation the systems
are developed in a sequence of iterations where subsets of the
full software functionality are integrated on a special hardware

test rig. The test rig is connected to a computer running the
test controller that, in turn, executes the system tests selected
for the current iteration. The test rig also runs regression tests
from previous increments.

In order to understand if the current notions of the de-
velopment staff and managers about the problems reflected
the actual problems we investigated different, existing data
sources. Having a data-centric approach was essential, in
particular given the particulars of the space industry/domain
and the objective focus of both developers and managers. It
was deemed unrealistic to rely on manually updated data or
subjective judgement; a focus on existing and raw data was
essential to get acceptance and create understanding.

Five main sources of data was identified: a requirements
tool (containing requirements, high-level test specifications
and traceability links between them), source code repository,
test code repository, in-house economical tool (containing
project/task planning and effort data), test rig (with test logs of
all test executions). Since the requirements and their possible
churn was thought to be of less importance for the integration
problems at hand, and since the requirements tool was not so
simple to connect to for data extraction purposes the present
study did not focus on it. In contrast, the source and test
code repositories used standard, albeit different, repository
tools from which history logs could more easily be extracted.
In particular, this was true for the source code which used
ClearCase1. Extraction scripts was created to extract relevant
data from the commit logs. The test rig is a custom, in-
house developed Windows PC application that logs all testing
activities in a custom text file format. Scripts were developed
to automatically copy the test log files and extract information
about the date, time, test case and detailed information about
any assertions that failed, or not, during the execution of
individual tests. From the economical tool the effort spent on
different development activities on a weekly basis could be
extracted. This was the only data with a subjective element to
it since it is ultimately based on individual time reports from
each staff member. Furthermore, the development activities are
quite coarse-grained with typically 3-5 different activities per
independent team over the course of a project.

B. Data visualisations and analysis

After having extracted data about source code
changes/churn, testing and test failures, as well as project
effort per week, the subsequent two phases of the case study
analysed and visualised the data. Many different metrics and
combination of metrics was considered as well as a multitude
of visualisation techniques. Statistical analysis of different
sorts were also applied during this process. Results were
presented in workshops in which the most revealing and
understandable visualisations and correlations were further
discussed and compared. Below we describe the main results
of these steps in more detail.

1In later projects, RUAG have transitioned to using Subversion for both
source and test code which would make future data extraction even simpler
and more consistent



Fig. 1. Heatmap showing source code changes (code churns) per week for a
subset of the project files and duration.

Heatmaps of the code churn per file over time lead to
several important discussions and realizations. Figure 1 shows
an example, here using a heatmap produced in the statistical
tool SPSS. Here, rows in the heat map denote files in one
source code package while columns denote the dates (here in
one week per column resolution) when changes were made.
The darker the color of a cell, the larger the code churn for
that file package and week.

The code churn heatmap in Figure 1 exposes a number of
interesting patterns:

• Vertical ‘lines’: a number of files have been changed
during one date. This pattern indicates such events as
baselining, reviews, deliveries, etc. in the project where
a number of files are modified.

• Horizontal ‘lines’: one file was changed consecutively
over a longer period of time. This pattern could indicate
that intensive development was done over a longer period
of time but could also indicate that there were continuous
adaptations and changes to the file package. This pattern
calls for checking whether this file was tested sufficiently.

Through the plotting of code churn heatmaps and workshop
discussions around them we learned that a critical capacity of
time-based heatmaps is that the timeline can be connected
to major project events. Staff frequently had to ‘translate’
from the timeline in the heatmap to the time view of the
project they had in their perception; even though the project
events that were considered essential differed depending on
the staff member and their roles key event like the start and
end of the development increments and their review status was
considered important by many.

We further learned that for a heatmap to be truly useful
it needs to support different filtering and grouping of items
to be mapped. The static visualisation tools that we used in
steps 4-5 were too limited to dynamically allow more focused
interaction with the data. Since the patterns that can be seen

Fig. 2. Heatmap of the (log) number of test failures over time for different
system test cases over a 2+ month period. Blurring for confidentiality reasons.

and thus analysed in the heatmap depends on the vertical
grouping and granularity of source code files that are included
inflexibility in choosing them can limit the patterns that are
found.

Heatmaps were also effective in analysing patterns and
trends in the test outcomes. Figure 2 shows a test outcome
heatmap where the logarithm of the number of failed assertions
per test case is the colour which is mapped for each test
case (row) and day (column) where there was testing. This
time the heatmap was produced in the statistical program
R. The logarithm was essential to create a more realistic
scale for the test outcomes of the investigated project. For
one the test cases are typically long with long series of
assertions that test multiple aspects of both the software and
its integration with the hardware given a certain system set up.
But these assertions are not independent, rather when one fail
there are many common-mode causes that will cause many
other assertions to also fail. However, we could not simply
normalize this to the test case failing since we do not have
good models or knowledge of these co-failing assertions. The
logarithm was found to give a reasonable mapping of the
actual failure behavior as perceived by testers, but the actual
scaling and colour mapping of heatmaps might vary between
projects or at least between companies, and thus warrants
future investigation.

A number of patterns can be seen also in this test outcome
heatmap, Figure 2. Since the mapped test cases are sorted
into related sets of test packages rows that are close to each
other also typically has a semantic or direct relation. However,
even so there is variance between the behavior of individual
test cases within different test packages. As an example, the
low fourth of the rows all correspond to tests of a specific
bus handling software. But while the bottom-most test case
is executed early in the given time span there is a clear line
at which other test cases in the same package start failing. In
discussions this was found to relate to dependencies among
test cases or to when specific hardware components were



available. For other test packages the failure behavior is more
evenly spread out over time.

There is also a difference in the time evolution of test
cases. While the non bottom-most test cases in the bottom test
package fail heavily for a short time period and then remain
stable and without subsequent failures, test cases just below
the middle of the heatmap have a less distinct failure behavior
that is spread out over long stretches of time. The latter test
cases were related to software for new hardware components
that were new to the company. In workshops the managers
confirmed that they had been the cause of much concern and
effort during the project. Thus it is not self-evident which
patterns are clearly negative or not; what might initially look
more ‘benign’ in that few failures are seen but spread out
over long stretches of time might indicate more far-reaching
and costly problems than intensive failure periods after which
initial problems are then rectified and further failures avoided.

A major revelation from the discussions around test failure
heatmaps was the apparent lack of traces of the increment-
based development and integration approach. Essentially, even
though earlier increments have been tested, reviewed and
‘closed’ some of their associated tests could still fail at later
times. Even though this is to be expected since it is typical of
any integration efforts it was unexpected that so few but time-
limited clusters of failing test packages could be identified. In
workshops it was decided that having such heatmaps during
a project could provide this information and insight at a
much earlier time and thus act as an early warning system
of subsequent problems. However, again, the non-interactive
and rather inflexible visualisation capabilities of R and SPSS
would not be enough to create the kind of informed and
focused discussions of the workshops without considerable
manual efforts. Since these efforts would also be needed on
a daily basis they were unlikely to be performed; a more
dynamic and automated approach was needed.

For visualising the effort data, normal time series graphs
was sufficient and heatmaps did not add any value. Probably
this is due to the fact that the effort data contains a few
summary categories, based on the main project activities. This
is different for the code churn and testing data where the
number of items to be mapped is typically large. Stacked
graphs of the effort per activity over time was useful both
in showing the total effort and its components.

In order to verify the staff notions and claims about corre-
lation of failed test cases and integration effort we collected
data from the financial/project management systems and test
progress and outcomes. Plotting them on the same diagram
resulted in figures like 3 where the dotted line is the integration
effort (in person-hours) and the solid line is the number of
failed test cases per week. The double line at the bottom is
the number of new revisions in the code repository at the same
time.

The Pearson correlation coefficient was 0.73 which sup-
ported that the experts’ suggestions that test problems is a
major factor in increasing integration efforts and costs. The
diagram also shows that the three data series - effort, failing

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
10

w
11

Effort Test cases failed # revisions

Fig. 3. Total project effort, number of test failures and number of revisions
per week over the course of a project.

test cases and changes in the code - are related. The peak
in week w8 shows that the integration was indeed costly at
the same time as we can observe testing problems, which
were also supported by working with the source code. The
technical leader in the project and the manager responsible
for that product could pinpoint which part of the product were
problematic at that time and why - which we interpreted as
a empirical validation of the representational property of our
measures.

Exploring the data and plotting it on simple diagrams
provided a solid basis to understand the underlying phenomena
in software development processes at the company and helped
to pinpoint problem areas. However, these visualizations did
not provide the stakeholders with the ability to quickly react in
the face of incoming problems. For example plotting the total
number of all revisions per week was an indicator that this
could be an underlying cost driver together with the failing
test cases. However, in order to react, the stakeholders needed
insight on which files were changed and which test cases were
the most problematic. That knowledge was necessary for the
stakeholders to make decisions abour prioritizing test effort,
resource allocations or understanding the problematic parts of
the product under development. Based on these findings we
used heatmaps to provide stakeholder with the early warning
systems.

C. Early warning system prototype

The results from the initial analysis and from the visualisa-
tions and correlation analysis lead to a number of conclusions.

• Heatmaps is an excellent way to visualize large data sets
and identify complex and ‘distant’ connections.

• By combining heatmaps with group discussions a better
understanding can be reached for high-level patterns in
how development and testing is currently carried out.

• Complex dependencies makes it hard to close some
integration steps which leads to delays in both the testing



and development processes.
• It is hard to know exactly which visualisations, metrics

and analysis that support useful analysis and sensemak-
ing; the number of alternatives and combinations is so
large that several needs to be ‘screened’ before a top list
can be produced.

• Code churn, test outcome data and project effort are es-
sential and should be collected but requirements stability
information might also provide additional analytic power

• A software improvement project like this is as much a
learning and teaching opportunity for the company as
it is a way to develop concrete tools and support; the
sensemaking that visualizations plus discussions create is
important to be able to change how employees actually
work.

• The visualisations and support for analysis must be
available during a project; post-mortem analysis is not
enough since each project have unique characteristics and
generic process improvements that fits all projects are
unlikely to exist.

Based on these conclusions from the first steps of the case
study it was decided that an Early Warning System for inte-
gration problems is feasible and that a prototype measurement
system to enable this should be developed. Compared to the
previous analyses and visualisations such a system would
dynamically present a current view of a running project. This
is critical not only to go from understanding of the problems to
having a chance to solve them within a running project (i.e. the
early warning), but also in that daily and wide-spread access
to key project data visualisations would help create support
among staff at large and thus make changes more easy to mo-
tivate and to perform. Furthermore, developing a framework
to perform data collection and analysis dynamically, during a
project would make it much more lightweight and cheaper to
try new correlation analyses, metrics, as well as visualizations.

Even though requirements data was not included in the
analyses it was investigated in parallel and also promise
in predicting integration problems. Basically, even though
requirements are fixed at an early stage, when there are
requirements changes it might heavily affect integration testing
and increase costs. It might also be a more direct indicator of
later problems since it can be a common cause in both source
code changes, test code changes as well as failing test cases.
This further indicated that an online measurement system, that
can handle multiple data streams from many and different
sources, is needed.

Based on this, the last step of the case study was the
design, installation and evaluation of an early warning system.
The basic design is to have specific data probes that can be
installed at each data source (such as the source and test
code repositories, financial system, test management system,
etc) that all report to a database server to which an analysis
and visualisation system is connected. Figure 4 shows the
prototype systems dashboard that integrates key, online project
information in a single dashboard view for easy access during
stand-up meetings.

VI. VALIDITY OF RESULTS

The main threat to internal validity is the fact that parts of
the investigated development projects were ongoing in parallel
to our study. For the development of the prototype system this
posed a threat that our study intervened with the proceeding of
the project by providing the team with additional knowledge,
thus confounding the results of the study. Even though this
is a threat, it is inevitable in these types of case studies and
affecting development practice is also part of the goal.

The main threat to the construct validity is the choice of
metrics for source code and test progress. In this study we
do not use metrics like code coverage or code complexity,
which can lead to us having and giving an incomplete view
on the source code or test processes. However, as the main
metrics used were found to be correlated with the main focus
of improvement efforts (cost/effort) we do not consider this an
important threat; completeness would go against the reasons
for focusing on the main causes and avoiding information
overload. Our interviews and initial workshops also supported
our claims that the metrics used in our study is relevant for
the studied phenomena.

The fact that we only investigate one company is a threat
to external validity and since we only study one project with
a relatively small code base this is also a threat to conclusion
validity.

VII. CONCLUSIONS

Ensuring a high quality of software is a complex task,
especially as systems grow more complex and involve more
people and more diverse technologies. With more mature tools
at their disposal companies nowadays have many sources
of data to measure and better understand their development
strengths as well as areas where they have improvement
potential. However, to really get information and insight from
these multiple streams of data tools are needed to summarize
and give overview as well as identify patterns and trends in
the extracted data. This case study have focused on how visual
analytics and simple statistical tools can be applied to better
understand the integration and testing efforts in a company
developing embedded, real-time control software.

Through a multi-step case study performed on site at the
company we refined the most relevant improvement areas,
identified data sources, created extraction scripts and then
used different visualisations, graphs and statistical analyses
to make sense of the data. In workshops with engineers and
managers at the company the created visualisations were then
further analysed and discussed. Throughout this process we
saw that simple heatmap visualisations mapping key, but raw,
data over time helped engineers and managers identify patterns
and understand development and testing behavior. Often the
insights created was in line with expectations but in other cases
the identified patterns and trends was unexpected and indicated
improvement areas.

In the present study the visual analytics was applied off-
line, for historical project data. Based on the discussions in
the workshops and the understanding the company wanted an



Fig. 4. Parts of prototype system dashboard with heatmaps integrating information about both source code changes and test outcomes.

online, dynamically updated visualisation system. In the final
phase, we detailed requirements and developed a prototype
such a system. The developed system is not a stand alone
system which automatically warns when certain pre-specified
limit values are reached, rather it makes the visual summaries
and analysis available to daily meetings at the company and
thus makes it possible for the discussions among project par-
ticipants to happen during the project rather than post-project.
This shows a lot of promise in supporting key decisions
about where to focus testing and quality assurance efforts
as well as when testing can be stopped. A key result is that
these kinds of systems must work in unison with the people
involved in development, and support the type of questions
they have, to support value-based management and decisions
in software development. Future work will focus on extending
and adapting the analysis framework to and then conducting
further evaluation in more companies and context.

ACKNOWLEDGMENT

The authors thank RUAG Space AB and the Swedish Space
Agency for the collaboration and financing the project. We
also acknowledge the thesis work of Tobias Alette and Viktor
Fritzon [19] which affected the present study.

REFERENCES

[1] R. Bell, T. Ostrand, and E. Weyuker, “Does measuring code change
improve fault prediction?” in Proceedings of the 7th International
Conference on Predictive Models in Software Engineering. ACM, 2011,
pp. 2–10.

[2] T. Ball and N. Nagappan, “Use of relative code churn measures to predict
system defect density,” in 27th International Conference on Software
Engineering, 2000, pp. 284–292.

[3] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 429–445, 2005.

[4] J. Jones, M. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” in Proceedings of the 24th international
conference on Software engineering. ACM, 2002, pp. 467–477.

[5] R. Wettel and M. Lanza, “Visual exploration of large-scale system
evolution,” in Reverse Engineering, 2008. WCRE’08. 15th Working
Conference on. IEEE, 2008, pp. 219–228.

[6] D. Reniers, L. Voinea, O. Ersoy, and A. Telea, “The solid* toolset
for software visual analytics of program structure and metrics com-
prehension: From research prototype to product,” Science of Computer
Programming, 2012.

[7] R. Feldt, R. Torkar, E. Ahmad, and B. Raza, “Challenges with software
verification and validation activities in the space industry,” in Proceed-
ings of the Int. Conf. on Software Testing. IEEE, April 2010, pp.
225–234.

[8] M. Staron, W. Meding, and B. Söderqvist, “A method for forecasting
defect backlog in large streamline software development projects and
its industrial evaluation,” Information and Software Technology, vol. 52,
no. 10, pp. 1069–1079, 2010.

[9] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev, “Crane:
Failure prediction, change analysis and test prioritization in practice -
experiences from windows,” in International Conference on Software
Testing, 2011, pp. 357–366.

[10] R. P. L. Buse and T. Zimmermann, “Information needs for software
development analytics,” Microsoft Research Technical Report, vol. MSR-
TR-2011-8, 2011.

[11] T. M. Khoshgoftaar, B. Cukic, and N. Seliya, “Predicting fault-prone
modules in embedded systems using analogy-based classification mod-
els.” International Journal of Software Engineering and Knowledge
Engineering, vol. 12, no. 2, pp. 201–222, 2002.

[12] T. M. Khoshgoftaar, B. B. Bhattacharyya, and G. D. Richardson, “Pre-
dicting software errors, during development, using nonlinear regression
models: a comparative study,” IEEE Transactions on Reliability, vol. 41,
no. 3, pp. 390–395, 1992, 0018-9529.

[13] M. Staron and W. Meding, “A method for identifying and monitoring
bottlenecks in lean software development projects,” in International
Conference on Product Oriented Software Process Improvement (PRO-
FES), 2011, p. n/a.

[14] R. P. Buse and T. Zimmermann, “Information needs for software devel-
opment analytics,” in Proceedings of the 34th International Conference
on Software Engineering, June 2012.

[15] L. Wilkinson and M. Friendly, “The history of the cluster heat map,”
The American Statistician, vol. 63, 2009.

[16] L. Voinea, J. Lukkien, and A. Telea, “Visual assessment of software
evolution,” Science of Computer Programming, vol. 65, no. 3, pp. 222–
248, 2007.

[17] E. Ahmad, B. Raza, R. Feldt, and T. Nordebäck, “Ecss standard
compliant agile software development - an industrial case study,” in
In Proceedings of the National Conference for Software Engineering
(NSEC 2010), 2010.

[18] A. Sandberg, L. Pareto, and T. Arts, “Agile collaborative research:
Action principles for industry-academia collaboration,” Software, IEEE,
vol. 28, no. 4, pp. 74–83, 2011.

[19] T. Alette and V. Fritzon, “Introducing product and process visualizations
to support software development,” Master’s thesis, Chalmers University
of Technology, Sweden, 2012.


