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Abstract. Statistical techniques for designing and analysing experiments are used to evalu-
ate the individual and combined effects of genetic programming parameters. Three binary 
classification problems are investigated in a total of seven experiments consisting of 1108 
runs of a machine code genetic programming system. The parameters having the largest effect 
in these experiments are the population size and the number of generations. A large number of 
parameters have negligible effects. The experiments indicate that the investigated genetic pro-
gramming system is robust to parameter variations, with the exception of a few important pa-
rameters. 

1 Introduction 

The Genetic Programming (GP) method might be the first instance of real automatic pro-
gramming (Koza et al 1999). In an even more general sense, GP could be the first technique to 
tell the computer what to do without having to specify how to do it. However, in order for that 
to be true the user must be able to run the GP system using only a minimal set of natural pa-
rameters. In an ideal case there should be no parameters or only parameters that make imme-
diate sense to the user's requirements such as maximal search time etc. This is far from true 
with present genetic programming systems. A modern GP system with additions such as 
Automatically Defined Functions (ADFs), Demes, and Dynamic Subset Selection have a very 
large number of parameters and settings creating a combinatorial explosion for the complete 
parameter space. This enormous parameter search space makes the search for an optimal or 
near optimal parameter setting difficult for the user. 

What is even more severe is the theoretical implication of numerous parameters and set-
tings. Each time we set a parameter we supply information to the search algorithm. If we set 
too many specific parameters, we might "point out" the solution with the parameters and we 
will not get more out of the system than we put in. We are supplying more information than 
the system is giving us back or in other words we are spending more effort and intelligence on 
the search for the right combination of parameters than the system does for the right solution. 

The standard defence against this argument is that GP is very robust and accepts a wide 
range setting with little degradation in performance. This is usually only a hunch from GP 
researchers since there has been no large, systematic investigation of parameter effect using 
genetic programming. Such an investigation would have the additional benefit of enhancing 
experiments by providing close to optimal parameter settings. The only broad directions in the 



literature are experience-based, rule-of-thumb-type parameter recommendations (Koza 1992), 
(Banzhaf et al 1998). 

In this works we describe the first series of experiments that address parameter influence in 
a broad and systematic way. 

The questions that we are addressing are: 
• Is GP robust toward different parameter settings or do settings have an effect on perform-

ance? 
• If there is an effect on fitness, which parameters have the largest effect? 
• Is the parameter effect dependent on single parameter settings or are combinations of pa-

rameters important? 
• Can some parameters be ignored and can general guidelines be devised for the most im-

portant ones? 
This paper address these questions using statistically sound experimental methods for pa-

rameter screening based on fractional factorial designs (Box et al 1978). Thes methods reduce 
the number of runs needed and increases the amount of knowledge that can be gained. 

2 Method 

To overcome the combinatorial explosion in the number of parameter combinations that 
need to be considered we use experimental design methods studied in mathematical statistics. 

2.1 Experimental design 

Statistical Design of Experiments (DoE) provides a framework to design and analyze com-
parative experiments, ie. experiments with the purpose to determine the quantitative effects of 
inputs on some output (Kleijnen 1998) (Box et al 1978). In this context the inputs are called 
factors and the output is called the response. The major advantage of using DoE designs is 
that experimentation becomes more efficient: both the effects of individual factors and their 
interaction can be investigated with limited experimental effort. This is achieved by changing 
more than one factor at a time. 

A basic DoE experimental design is the factorial design where each factor has a discrete 
number of levels. An example of a two-level factor in GP is whether a certain function should 
be included in the function set or not. Continuos factors, such as for example the population 
size, can be used in factorial experiments if two discrete levels are chosen from their valid 
range. In a full two-level factorial design all combination of factor levels are included, result-
ing in 2k different parameter settings, where k is the number of factors. Even for relatively 
small k:s the number of combinations needed is impractical. To overcome this fractional fac-
torials are used. They utilize the fact that higher-order interactions between factors,  ie that 
two or more factors have a combined effect different from each one of them in isolation, often 
have negligible effects. By letting lower-order effects, such as the main effects of the parame-
ters and their two-factor interactions, be confounded with each other only a fraction of the full 
factorial design needs to be run.  

The amount of confounding between effects in a design is determined by the design resolu-
tion. Design resolution refers to the amount of detail, separate identification of factor effects 
and interactions, that a design supports. For example, in a design of resolution five the main 



effects are confounded with four-factor interactions while two-factor interactions are con-
founded with three-factor interactions. The confounding pattern can be calculated from the 
design generators that define how the design is to be constructed. For more information on 
factorial designs see (Box et al 1978). 

A typical strategy for experimentation using DoE is to make sequential use of designs with 
increasing resolution (Box et al 1978). In the first experiment a large number of factors are 
included since we do not yet know which of them may have large effects on the response. A 
heavily fractionalized design with low resolution is often used to screen out a majority of the 
factors. The remaining factors are studied in more detail in later experiments. Later experi-
ments typically have higher resolution to permit separation of main and two-factor effects. 

Tradtional DoE have been developed for physical and medical sciences and its development 
has been biased by the typical applications in these fields. For example, when an experiment 
is conducted in the real world it is often impractical to control more than 15 factors. (Kleijnen 
1998) points out that a number of things are different when conducting experiments on a 
computer simulation: there are often more factors to be studied, we can practically control 
many more factors, and we do not need to randomize the run order of the experiments to get 
results that are robust to uncontrolled, and possibly even unknown, factors. These issues ap-
ply, in a similar way to genetic programming experiments. 

3 Experiments 

A total of 1108 GP runs were performed in seven different experiments on three different 
problems. In these runs, a total of about 2.5 billion individuals have been evaluated. Below we 
describe the problems, GP system, factors and response variable used in the experiments. We 
also describe the design of the experiments. 

3.1 Problems 

We believe in the importance of evaluating machine learning algorithms over several prob-
lems. In this work we have used three different binary classification problems. However, we 
plan to expand the number and types of evaluated problems significantly in future work, see 
section 6. The problems used are all standard machine learning problems: Ionosphere, Gaus-
sian, and Pima Indians Diabetes Database. 

Ionosphere Problem 
This real-world radar echo classification problem has been donated by Vincent Sigillito of 

the Space Physics Group at John Hopkins University in the US. It is taken from the UCI Ma-
chine Learning repository (UCI ML Repository 1999). There are 200 instances in the training 
set and 151 instances in the validation set. The problem has thirty-four attributes and a binary-
valued response indicating whether the echoes have detected any structure in the ionosphere. 

Gaussian Problem 
The gaussian classification problem is an artificial problem for heavily overlapping distri-

butions with non-linear separability. The class 0 is represented by a multivariate normal dis-
tribution with zero mean and standard deviation equal to 1 in all dimensions, and the class 1 
by a normal distribution with zero mean and standard deviation equal to 2 in all dimensions. 



There are 1000 patterns, 500 in each class. We have used a variant of the standard eight-
dimensional version, where there are 16 additional false (random) inputs in addition to the 
eight true inputs. Theoretical maximal classification for the pure 8-D problem is 91%. The 
problem is probably not easier with the false inputs added. 

Pima Indians Diabetes Problem 
This real-world medical classification problem has been donated by National Institute of 

Diabetes, Digestive and Kidney Diseases in the US. It is taken from the UCI Machine Learn-
ing repository (UCI ML repository 1999). The diagnostic, binary-valued response variable 
indicates whether the patient shows signs of diabetes according to World Health Organisation 
criteria (i.e., if the 2 hour post-load plasma glucose was at least 200 mg/dl at any survey ex-
amination or if found during routine medical care).  The population lives near Phoenix, Ari-
zona, USA. There are 576 instances in the training set and 192 in the validation set. The prob-
lem has eight attributes and a binary-valued response value. 

3.2 Genetic programming system, its parameters and their values 

For our experiments we used the DiscipulusTM system, a commercial implementation of 
machine code GP (RML 1999). DiscipulusTM is based on the AIM-GP approach, a very effi-
cient method for genetic programming formerly knows as CGPS (Nordin 1997). The system 
uses a linear representation of individuals and a substring-exchanging crossover. In this survey 
we have used most of the parameters in DiscipulusTM. These parameters are used as factors in 
the experiments described below. Their factor identifier (A to Q) and their value at the low 
and high level used for the experiments are given in table 1. The levels of the continous pa-
rameters were chosen to represent qualitatively distinct levels based on our previous experi-
ence with the GP system in use. The parameters are briefly described below: 
A. PopSize: The number of individuals in the population. At the low level the population size 

is 50 and at the high level it is 2000.  
B. Generations: The system uses steady-state tournament selection so the generation parame-

ter is the number of generation equivalents computed from number of tournaments. At the 
low level 50 generations are used and at the high level 250 are used. 

C. MutationsFreq: Mutation frequency is the probability that an offspring will be subject to 
mutation. At the low level the mutation frequency is 10% and at the high level it is 90%. 

D. CrossoverFreq: Crossover frequency is the probability that an offspring will be subject to 
crossover. At the low level the crossover frequency is 10% and at the high level it is 90%. 

E. Demes: Determines whether the population is subdivided into subpopulations. In each 
experiment with demes we used 5 subpopulations, a crossover rate between demes of 3% 
and a migration rate of 3%. At the low level demes are not used and at the high level they 
are used. 

F. ErrorMeasurement: The error measurement determines whether fitness is the sum of abso-
lute values of errors (parameter at low level) or the sum of squared errors (parameter at 
high level). 

G. DynamicSubsetSelection: Dynamic Subset Selection (DSS) is a method that only uses a 
subset of all the fitness cases in each evaluation. The selection of fitness cases was based 
on their individual difficulty (40%), the time since they were last used in fitness calcula-
tion (40%) and randomly (20%) (Gathercole 1994). At the low level DSS is not used and 
at the high level it is used. 



H. MissClassificationPenalty: The classification problems are mapped to symbolic regression 
problems; each class is given a unique number. The fitness value is either the absolute dis-
tance or the squared distance between the actual and desired value. This parameter gov-
erns the amount of extra penalty that is added to the fitness for incorrect (miss) classifica-
tions. At the low level it is 0.0 and at the high level it is 0.25. 

I. FunDiv: Determines whether division instructions are in (high level) or not in (low level) 
the function set. 

J. FunCondit: Determines whether conditional instructions such as comparison, conditional 
loads and jumps are in (high level) or not in (low level) the function set. 

K. FunTrig: Determines whether trigonometric functions are in (high level) or not in (low 
level) the function set. 

L. FunMisc: Determines whether other non- trigonometric, non-arithmetic and non-
conditional functions are in (high level) or not in (low level) the function set. 

M. InitSize: The maximal initial size of the individuals, measured in number of instructions. 
At the low level it is 50 and at the high level it is 100. 

N. MaxSize: The maximal allowed size of an individual, in number of instructions. At the 
low level it is 128 and at the high level it is 1024. 

O. Constants: Determines the number of constants used in each individual. At the low level it 
is 1 and at the high level it is 10. 

P. MutationDistr: When an instruction block is mutated it can be done on several different 
levels; the block level, instruction level or sub-instruction level (RML 1998). At the low 
level the distribution between them is 80%, 10%, and 10% respectively, and at the high 
level it is 10%, 10% and 80%. 

Q. HomologousCrossover: Determines the percentage of crossovers that are performed as 
homologous crossover (Nordin et al 1999). At the low level it is 5% and at the high level 
it is 95%. 

3.3 Response variable 

We have used the maximum validation hit rate as the response variable for all problems and 
runs. This value was obtained by extracting the best individual on training data and running it 
on the validation set. It is reported as the percentage of correctly classified instances in the 
validation set. 

Our choice of response variable defines the unit for the effects from the analysis of the ex-
perimental data. If, for example, an effect is calculated to be 5 this means that the average 
effect that can be expected when changing the factor from its low to its high level will be 5 
percentage units (not 5%). Thus if the average response is 65% we would expect 70% on av-
erage with the factor at its high level. 

3.4 Experimental designs 

We have used three different experimental designs in a sequential fashion, each one based 
on the results from the previous one. The first two designs have been used on all three prob-
lems with the settings of factor levels described above. The third design uses different levels 
for the factors and has only been used on the gaussian problem. The purpose of the first ex-



periment is to screen the large number of factors down to a more manageable set. Later ex-
periments study the effects of the remaining factors in more detail. 

To reduce the number of runs in the screening experiment we have employed a saturated 
design first described by Ehlich (Ehlich 1964) (Statlib 1999). This design allows the estima-
tion of the main effects of seventeen factors in eighteen runs. The confounding patterns for 
this design is very complicated; main effects are confounded with several two- and higher-
order effects. 

The factors that had the largest effect in the screening experiments are varied in the second 
round of experiments. The rest of the factors are held constant at intermediate levels (N = 256, 
P = (40, 40, 20), Q = 50) or at the level indicated by the sign of its effect from the screening 
experiment (I, K, L, M, O at their low level and J at its high). We employ a fractional factorial 
experiment of resolution four. In this design the main effects are confounded with three-factor 
interactions which are assumed to be negligible. This allows the estimation of all main effects. 
Two-factor effects can be estimated but are confounded with each other. The actual design 
used is a 28-4 fractional factorial with 16 runs (Box et al 1978). The generators for this design 
are D=ABC, E=BCH, F=ACH and G=ABH where a low level is represented by ñ1 and a high 
level by 1. 

In order to estimate all two-factor interactions individually we need a design of resolution 
five. This is illustrated for the gaussian problem in the third experiment, which uses a 25-1 
fractional factorial with 16 runs (Box et al 1978). The generator for this design is H = ABCD. 

In this third experiment we study the five factors that had the largest effect in experiment 2 
on the gaussian problem. We alter the levels of these factors to gain more knowledge of their 
effect. The population size and number of generations had a significant effect and by increas-
ing them (A to (500, 5000) for low and high level respectively and B to (100, 500)) we want 
to investigate if this effect holds also for higher levels. By increasing the low level of the mu-
tation and crossover probabilities to 50% and keeping the high level at 95%, we can investi-
gate if the level of 95% was extreme. By altering the values of both the low (to 0.05) and high 
levels (to 0.5) of the miss-classification penalty we can investigate if it is only important to 
have this penalty regardless of level or if the level in itself is important. 

4 Results 

Below we document the results for the seven experiments conducted. All values reported 
for the effect of factors and for confidence intervals is in the same unit as the response vari-
able, see section 3.3. We have conducted a sensitivity analysis to evaluate how sensitive our 
results are to the number of replicates used for each parameters setting. This analysis is briefly 
described below. 

4.1 Results of the screening experiment on IONOSPHERE 

For each of the eighteen factor settings ten (10) replicates were run on the ionosphere prob-
lem. The standard error calculated from these 180 runs was 2.04 giving a 95% confidence 
interval of 4.63. The effects that were statistically significant at this confidence level are (in 
order of decreasing effect): A, B, G, C, H, D, E, F. The effect of A was about 45% larger than 
the effect of F. 



4.2 Results of the screening experiment on Gaussian 

For each of the eighteen factor settings eight (8) replicates were run on the gaussian prob-
lem. The standard error calculated from these 144 runs was 0.74 giving a 95% confidence 
interval of 1.94. The effects that were statistically significant at this confidence level are (in 
order of decreasing effect): A, B, C, H, E, D, G, F, J*, O*, P*, L*. However, note that the four 
factors marked with an asterisk had much smaller effect than the previous eight. For example 
the effect of F is more than four times higher than the effect of J. 

4.3 Results of the screening experiment on PIMA-diabetes 

For each of the eighteen factor settings, eight (8) replicates were run on the pima-diabetes 
problem. The standard error calculated from these 144 runs was 0.33 giving a 95% confidence 
interval of 0.96. The effects that were statistically significant at this confidence level are (in 
order of decreasing effect): A, C, G, B, F, E, H, D, L*, N*, P*, M*. However, note that the 
four factors marked with an asterisk had much smaller effect than the previous eight. For ex-
ample the effect of D is more than eight times the effect of L. 

4.4 Result of Second experiment on ionosphere 

For each of the sixteen factor settings ten (10) replicates were run on the ionosphere prob-
lem. The standard error calculated from these 160 runs was 0.66 giving a 95% confidence 
interval of 1.50. The effects that are statistically significant at this confidence level are shown 
in table 4. 

Table 4: Factors and their levels for experiment 2  
on the ionosphere problem 

CON-
TRAST 

EF-
FECT 

95% 
CONF. IN-
TERVALL 

A 4.19 +/- 1.50 
B 2.23 +/- 1.50 

AD + BC + 
EH+ FG 

2.16 +/- 1.50 

AG + BH + 
CE + DF 

1.89 +/- 1.50 

AH + BG + CF + 
DE 

1.75 +/- 1.50 
 
The population size (A) has the largest effect while the number of generations (B) and three 

different two-factor-interaction combinations have similar effects. The values reported in the 
table should be interpreted in the following way: if we change the level of factor A from its 
low to its high level we can expect an average increase in the validation hit rate by 4.19 units 
with a 95% confidence interval from 2.69 to 5.69 units. The same type of interpretation can be 
made for all effects reported in this paper. 

The average validation hit rate was 92.1%, with a maximum of 98.7% and a minimum of 
66.9%. The maximum average for a particular setting of the factors was 98.2% and the mini-
mum 85.8%. These results can be compared with the maximum reported result from the UCI 



database describing the ionosphere problem: an average of 96% obtained by a backprop 
NN and 96.7% obtained with the IB3 algorithm (UCI ML repository 1999). However, we 
measure generalisation in a slightly different way: In the GP community it is common to look 
for the best generalizer in the population at reporting intervals in contrast to noting generaliza-
tion capabilities among the best performing solution candidate on the training set. This differ-
ence applies for all experiments in this paper. 

4.5 Result of second experiment on gaussian 

For each of the sixteen factor settings ten (10) replicates were run on the gaussian problem. 
The standard error calculated from these 160 runs was 0.84 giving a 95% confidence interval 
of 1.94. The effects that are statistically significant at this confidence level are shown in table 
5. 

Table 5: Factors and their levels for experiment 2  
on the gaussian problem 

CON-
TRAST 

EF-
FECT 

95% 
CONF. IN-
TERVAL 

A 11.51 +/- 1.94 
C 5.21 +/- 1.94 
B  5.14 +/- 1.94 

AD + BC + 
EH+ FG 

3.39 +/- 1.94 

D 2.82 +/- 1.94 
AH + BG + CF + 

DE 
2.76 +/- 1.94 

AF + BE + CH + 
DG 

2.35 +/- 1.94 
 
The population size (A) clearly has the largest effect with the mutation probability (C) and 

number of generations (B) having about half the effect of A. Three different two-factor-
interaction combinations and the crossover probability (D) have smaller effects. 

The average validation hit rate was 63.8%, with a maximum of 88.9% and a minimum of 
48.6%. The maximum average for a particular factor setting was 83.7% and the minimum 
52.3%. This can be compared to the theoretical limit for this problem with a dimensionality of 
eight: 91%. However, note that this limit does not take the eight false inputs into account. 

4.6 Result of second experiment on pima-diabetes 

For each of the sixteen factor settings ten (10) replicates were run on the pima-diabetes 
problem. The standard error calculated from these 160 runs was 0.72 giving a 95% confidence 
interval of 1.63. The effects that are statistically significant at this confidence level are shown 
in table 6. 

Table 6: Factors and their levels for experiment 2 on the pima-diabetes problem 
CON-

TRAST 
EF-

FECT 
95% 

CONF. IN-
TERVAL 



A 5.72 +/- 1.63 
B 2.12 +/- 1.63 
G 2.02 +/- 1.63 

 
The population size (A) have the largest effect while the number of generations (B) and the 

dynamic subset selection (G) have smaller effects. 
The average validation hit rate was 65.46%, with a maximum of 77.6% and a minimum of 

61.5%. The maximum average for a particular setting of the factors was 72.8% and the mini-
mum 61.5%. These results can be compared with the maximum reported result from the UCI 
database describing the pima-diabetes problem: 76% using the ADAP learning algorithm 
(UCI ML repository 1999). 

4.7 Result of third experiment on gaussian 

For each of the sixteen factor settings ten (10) replicates were run on the gaussian problem. 
The standard error calculated from these 160 runs was 0.89 giving a 95% confidence interval 
of 2.02. The effects that are statistically significant at this confidence level are shown in table 
7. Note that the levels used for the factors in this experiment are not the same as for the previ-
ous experiments. Hence, the actual effects are not comparable between experiments 2a and 3. 

Table 7: Factors and their levels for experiment 3 
CON-

TRAST 
EF-

FECT 
95% 

CONF. IN-
TERVAL 

B 9.39 +/- 2.02 
A 7.53 +/- 2.02 
H 3.71 +/- 2.02 

AD  -2.30 +/- 2.02 
 
The number of generations (B) and the population size (A) have the largest effects. The 

positive effect of the increased miss-classification is smaller but still significant. The same is 
true for the interaction between the population size (A) and the crossover probability (D). 
Note that since this design has resolution five this two-factor interaction is not confounded 
with any other two-factor interaction, as was the case in previous experiments. The somewhat 
surprising negative effect of this interaction means that some caution is called for when using 
large population sizes; increasing the crossover probability might have a detrimental effect. 

The average validation hit rate was 76.4%, with a maximum of 88.9% and a minimum of 
61.6%. The maximum average for a particular factor setting was 85.8% and the minimum 
65.1%. 

5. Discussion 

We have presented our first results in a larger project attempting to investigate the effect of 
GP parameters. Even though these results stem from a limited number of problems and ex-
perimental designs we believe that some interesting conclusions can be drawn. However, we 
are far from settling the questions raised in the introduction, but we can identify interesting 
patterns. 



In all three screening experiments the same eight parameters had the largest effects with the 
remaining nine factors having small or statistically insignificant1 effects. Among these nine 
factors that were consistently screened out, we can find the factors determining the function 
set, the initial and maximal size of the individuals, the number of constants, the distribution of 
different mutation operators and the amount of crossovers that are homologous. It will be in-
teresting to see if this result is valid for other problems and in other ranges of the continuos 
parameters. 

Consistently, on all three problems, the population size and the number of generations are 
the most significant parameters. The population size comes out on top in the second experi-
ments on all three problems with the number of generations a close second or third. However, 
note that the effect of the population size is numerically much larger than the other effects; 
this indicates that having a large population is important to get good results with GP. Effort 
has not been individually targeted in this survey, but it is interesting to note that choosing a 
large population size sometimes is more important than a large number of generations. In 
other words: a large population size running for very small number of generations could be 
better than a small population size running for a ì normalì  number of generations. More inves-
tigation is needed on this. 

It is interesting to note that the mutation and crossover probabilities have rather large effects 
on the gaussian problem. This somewhat contradicts the notion that mutation probability 
should be low. However, these factors did not have a statistically significant effect on the two 
real-world problems. 

Dynamic subset selection can have a positive effect on the performance (Gathercole 1994). 
The fact that it, in addition, decreases the execution time of a run considerably would further 
speak for a more widespread use. 

On both the gaussian and the ionosphere problem there are significant two-factor interac-
tions. Since the design for experiment number two had a resolution of four we cannot separate 
the effect of different two-factor interactions. If we would like to do so we could add further 
runs to the existing designs or use a design of resolution five. Note that it can often be wise to 
use a design with lower resolution first and then add runs to separate between two-factor in-
teractions of interest. In general, this will reduce the total number of runs needed. For exam-
ple, to separate the four two-factor interactions having a combined effect of 3.39 on the gaus-
sian problem in table 5 would require 3 extra experiments. Using a design of resolution five 
would require 64 runs; 48 more runs than for the design used herein. 

The third experiment on the gaussian problem was included to show an example of a design 
of resolution five. Furthermore, the levels of the factors studied were changed to see their ef-
fect in other ranges of values. It is notable that the population size and number of generations 
are still the dominant factors. Note, however that the population size is no longer dominating; 
this could indicate that there is a limit to what can be gained from increasing the population 
size. The positive effect of the miss-classification penalty factor indicates that not only is it 
good to have such a penalty, but a relatively large penalty is better than a smaller one. 

Our results partly support the notion that GP systems are robust to different parameter set-
tings, as long as we choose the right values for the most important ones: population size and 
number of generations. On some problems the crossover and mutation probability can give 
good results with large levels. However, the negative interaction between population size and 
crossover probability in experiment 3 indicates that some caution must be taken. 

                                                           
1 If an effect is not statistically significant it can not be separated from the natural variation in the response, ie noise. 



The methodology used in this work can be used to optimize the results from a GP system. 
For example, note that the average response on the third experiment on gaussian is higher than 
the average response on the second experiment on the same problem. This is because the lev-
els used in the third experiment were chosen based on the results from the second experiment. 
Thus, in addition to giving researchers a way to map out the effect of different parameters, 
DoE techniques may be used to optimize the response on a particular problem. 

A drawback with the kind of DoE techniques used in this work is that they assume that 
higher-order interactions between factors are negligible. The empirical evidence for making 
this assumption are abundant; experimental investigations frequently show that the effect can 
be explained by a few important factors (Kleijnen 1998). However, we can never be fully sure 
and it will probably be wise to conduct full factorial experiments on some problems to vali-
date this assumption. We have also noted that the responses in our experiments are often not 
normally distributed but grouped into clusters. In theory this makes statistical analysis of ef-
fects difficult since it violates the assumption of normally distributed responses. In practice, 
most statistical techniques have shown to be robust against deviations from normality (Box et 
al 1978). 

It is worth noting that the GP system consistently performed very well compared to the pre-
viously reported best results on the test problems but with the caveat that generalization is 
measured differently. In future work we plan to change generalisation measurements to com-
ply with the methods used in the UCI-database. 

7. Conclusions 

The Design of Experiments (DoE) techniques, from mathematical statistics, have been in-
troduced as a solid methodology for evaluating the effect of genetic programming parameters. 
These techniques can also be used to increase the performance of a GP system, by guiding the 
user in choosing ëgoodí parameter combinations. 

Our experiments show that, on three binary classification problems, the most important pa-
rameter was the population size followed by the number of generations. On one problem, 
large mutation and crossover probabilities had a positive effect. Furthermore, on all three 
problems, the same and large number of factors could be screened out because their effect 
could not be distinguished from noise. The result supports the notion that GP systems are ro-
bust against parameter settings but highlights the fact that there are a few parameters that are 
crucial. 

This work reports the first results from a larger project attempting to investigate the effect 
of GP parameters. Much more work, involving more detailed designs as well as more varied 
test problems, is needed before we can address the questions as to the role and effect of GP 
parameters. We believe that such findings can be of great importance to the applicability of 
genetic programming in both industry and academia.   
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