Paper 3.

Robert Feldt. An Experiment on Using Genetic Programming to Develop Multiple Di-
verse Software Variants, Technical Report no. 98-13, Department of Computer Engi-
neering, Chalmers University of Technology, Gothenburg, Sweden, September 1998.

This report includes the two previously published papers:

Robert Feldt. Generating Multiple Diverse Software Versions with Genetic Program-
ming - an Experimental Study, IEE Proceedings - Software, vol. 145, issue 6, pp.
228-236, December 1998.

Robert Feldt. Generating Multiple Diverse Software Versions with Genetic Program-
ming, Proceedings of the 24th EUROMICRO Conference, Workshop on Dependable
Computing Systems, pp. 387-396, Visteras, Sweden, August 1998.

An Experiment on Using Genetic Programming
to Generate Multiple Software Variants

Robert Feldt

Technical Report 98-13, Department of Computer Engineering, Chalmers University of Technology,
Sweden, October 1998.

Abstract

Software fault tolerance schemes often employ multiple software variants developed to meet
the same specification. If the variants fail independently of each other, they can be combined
to give high levels of reliability. While design diversity is a means to develop these variants,
it has been questioned because it increases development costs and because reliability gains
are limited by common-mode failures. We propose the use of genetic programming to
generate multiple software variants by varying parameters to the genetic programming
algorithm. We have developed an environment to generate programs for a controller in an
aircraft arrestment system. Eighty programs have been developed and tested on 10000 test
cases. The experimental data shows that failure diversity is achieved but for the top
performing programs its levels are limited.

1. Introduction

One approach to software fault tolerance employs multiple variants of the same software to
mask the effect of faults when a minority of variants fails [Avizienis77]. Design diversity,
i.e., several diverse development efforts, has been proposed as a technique for generating
these redundant variants. The difference in the programs, which is generated by the different
design methods, is called software diversity. The hope is that the diversity in the programs
will make them exhibit different failure behavior; they should not fail for the same input and,
if they do, they should not fail in the same manner.

There are two main drawbacks with the approach of design diversity: (1) it is not obvious
if and how we can guarantee that the programs fail independently and (2) the life cycle cost
of the software will likely increase. The original idea of N-variant programming (NVP)
opted for the specification of the software to be given to different development teams
[Avizienis77]. The teams should independently develop a solution, and this independence
between the teams should manifest itself in independent failure behavior. However, software
development personnel have similar education and training and use similar thinking,
methods and tools. This may lead to common-mode failures, i.e., several variants failing for
the same input, and limit the diversity that can be achieved. Experimental research has
shown that there are systems for which the independence assumption is not valid [Knight86].
The strength of using design diversity has thus been questioned.

In [Lyu94], the term random diversity was proposed to denote the above scenario;
generation of diversity is left to chance and arises from differences in background and
capabilities of the personnel in the development teams. In contrast to this, they introduced

the notion of enforced diversity. By listing the known possible sources of diversity and
varying them between the different development teams, the software variants can be forced
to differ. In [Littlewood89], Littlewood and Miller showed that the probability that two
variants developed with different methodologies would fail on the same input is determined
by the correlation between the methodologies. The correlation is a theoretical measure of
diversity defined over all possible programs and all possible inputs. Littlewood and Millers
calculations set the goal for studies into achieving software diversity: find methodologies
with small or negative correlation.

A problem in using design diversity is that life cycle costs can increase. Obviously, the
development cost will increase; we have to develop N variants instead of one. In addition to
this, maintenance costs increase. Each change or extension to the specifications of the
software must be implemented, and possibly even redesigned, in each of the diverse variants.
The actual cost increases have been estimated to be near N-fold [Hatton97].

This paper introduces a novel approach for developing multiple diverse software variants
to the same specification that addresses both the development cost and non-independence
problems of design diversity. The proposed approach uses genetic programming (GP) which,
according to [Koza92], is a technique for searching spaces of computer programs for
individual programs that are highly “fit” in solving (or approximately solving) a problem.
GP evolves programs from specified atomic parts and adhering to a basic specified structure.
Genetic algorithms model evolutionary processes in nature and are studied under the subject
of Evolutionary Computation (see for example [Bdck97]). By varying a number of
parameters affecting the development of programs, we can force them to differ.

Section 2 introduces genetic programming and section 3 discusses how it can be used to
develop diverse software variants. The experiment that have been performed is described in
section 4 followed by the experimental results in section 5. Section 6 evaluates the results.
Finally, we conclude and indicate future work.

2. Genetic programming

Genetic algorithms mimic the evolutionary process in nature to find solutions to problems.
Genetic programming is a special form of genetic algorithm in which the solution is
expressed as a computer program. It is essentially a search algorithm that has shown to be
general and effective for a large number of problems.

In the classical view of natural evolution, individuals in a population compete for
resources. The most “fit” individuals survive, i.e., they have a higher probability of having
offspring in the next generation. This process is modeled in genetic algorithms in which the
individuals are objects expressing a certain, often partial or imperfect, solution to the
investigated problem. In each generation, each individual is evaluated as to how good a
solution it constitutes. Individuals that are good are chosen for the next generation with a
higher probability than low-fit individuals. By combining parts of the chosen individuals into
new individuals, the algorithm constructs the population of the next generation. Mutation
also plays an important part. At random, some parts of an individual are randomly altered.
This is a source of new variations in the population.

While a genetic algorithm generally works on data or data structures tailored to the
problem at hand, genetic programming works with individuals that are computer programs.
This technique was introduced by Koza in [Koza92] and has recently spurred a large body of
research [Koza97]. Kozas programs are trees that are interpreted in software but a number of

other approaches exist. For example, in [Nordin95] Nordin evolved machine language
programs that control a miniature robot.

A number of GP systems are available. To use one of them to solve a particular problem,
we must tailor it to the problem. This involves choosing the basic building blocks (called
terminals), such as variables and constants, and functions that are to be components of the
programs evolved, expressing what are good and bad characteristics of the programs,
choosing values for the control parameters of the system and a condition for when to
terminate the evolution of programs [Koza92]. The control parameters prescribe, for
example, how many individuals are to be in the population, the probability that a program
should be mutated and how the initial population of programs should be created.

The major part of tailoring a GP system to a specific problem is to determine a fitness
function that evaluates good and bad characteristics of the programs and to develop an
environment in which these characteristics can be evaluated. There is no reason to use GP if
it is harder to implement an evaluation environment than it is to implement a program
solution. However, GP can be used for problems that we can state but for which no solution
is known. The fitness function is often implemented via test cases with known good answers.
However, the fitness evaluation process is much more general and constitutes any activity
taken to evaluate the performance of a program. For example, in [Nordin95], the programs
are evaluated in a real robot; the ability of the program to avoid obstacles while keeping the
robot moving is evaluated and used as a fitness rank.

2.1 Diversity in genetic programming

The term diversity is used with a special meaning in the Evolutionary Computation (EC)
community. If the population contains programs that are different, it is said to be diverse.
When there is no diversity left in the population, i.e. all programs look and behave the same,
the GP run is said to have converged to a solution. This can happen before good solutions to
the problem have been found and thus different ways to maintain and enhance the diversity
are studied (see for example [Ryan96]). Measuring the diversity in the population is
fundamental to this aim.

Several different measures of diversity have been proposed in the EC community and are
classified into two different classes: genotypic and phenotypic measures [Banzhaf98]. These
classes directly correspond to two of the four characteristics of software diversity listed in
[Lyu94]. Genotypic diversity is called structural diversity by Lyu et al. and measures
structural differences between the programs. Phenotypic diversity is called failure diversity
by Lyu et al. and measures differences in the failure behavior of the programs.

The phenotypic diversity remaining in the population when the GP run is terminated can
be used to enhance the effectiveness of GP. In [Zhang97], Zhang and Joung proposed that a
pool of programs, instead of a single one, should be retained from a GP run. The output for a
certain input is established by applying the programs in the pool to the input and taking a
vote between them to decide the master output, similar to an N-variant system.

Our approach is distinct from the approach of Zhang and Joung, since we propose that
diversity from several runs of a GP system should be exploited and that the parameters to the
system should be systematically varied to promote diversity.

Our goals are also markedly different from the research on measuring diversity in GP
populations. The main goal of such research is to decide whether the run should be stopped
because the population has converged [Banzhaf98].

2.2 Parameters to a GP system

In the remainder of this paper, we take a pragmatic view of genetic programming. We
consider it a technique for searching a space of programs and view it as a "black box" with
three sets of parameters: parameters defining the program space to be searched (program
space parameters, PSP), parameters defining details about the search (search parameters, SP)
and parameters to the evaluation environment (evaluation parameters, EP).

The program space parameters include parameters defining the terminal and function sets
and the structure of the programs. These parameters define a space of all possible programs
adhering to the specified structure and applying the specified functions to the specified
terminals.

The search parameters affect only the result, i.e., effectiveness, of the searches in the
space of programs defined by the program space parameters. Examples of search parameters
are the number of programs in the population and the probability that a program should be
mutated.

The evaluation parameters define, for example, the number and nature of test cases to be
used in evaluation. The strategy for evaluation is also viewed as a parameter. An example of
a strategy would be to let the test cases change during evolution to test the programs on
difficult input values.

It is worth noting that this black-box view frees us from considering only genetic
programming. We can consider other algorithms searching a user-definable program space
or other algorithms that generate programs. Possible substitutions for GP could be program
induction methods or other machine learning algorithms studied in the area of artificial
intelligence. Diversity could be found by varying the algorithm used.

3. Software diversity with genetic programming

The output from a run of a GP system is a population of programs that are solutions to the
problem stated in the fitness function implemented in the evaluation environment. The
solutions are of differing quality; some programs may solve the problem perfectly, others
might not even be near solving a single instance of the problem and in between are programs
with differing rates of success. The diversity in this population can be exploited [Zhang97].
However, the amount of diversity available in the population after a GP run will be limited
since populations tend to converge to a solution. One way to overcome this might be to rerun
the system with the same parameter settings. GP is a stochastic search process, and two runs
with the same parameters can produce different results. Diversity might also be achieved by
altering parameter values between different runs of the GP system. If we change the search
parameters to a GP system, the search might end in different areas of the search space of
programs. Furthermore, if we change the program space to be searched by altering the
program space parameters, we will get programs using different functions and terminals and
adhering to a different structure. Diversity might also be achieved by changing parameters to
the evaluation environment. Thus, we propose that diverse software variants are developed
by running, re-running and varying parameters to a genetic programming system tailored to
the specification for the variant(s).

3.1 Procedure for developing diverse programs with genetic
programming

Table 1 outlines the seven different phases in the procedure we propose. We start by
developing an environment to evaluate the quality of programs (phase I), i.e., how well they
adhere to the requirements stated in the specification. Thus, upon entering phase I, we need
to have a specification at hand. Next, we need to choose which parameters to vary, which
values to vary them between and which combinations of parameter values to run with the GP
system. This is done in phases II, III and IV, respectively. Research is needed to evaluate
which parameters most affect the diversity. The principle for choice of values should be to
include building blocks, i.e., functions and terminals, which are thought to be needed to
develop a solution. Careful consideration must be made so that the diversity is not limited.
There are large numbers of parameters to a GP system, and most of them can take multiple
values, so the number of combinations of parameter values is vast. We propose that a
systematic exploration of these different combinations should be tried. Statistical methods
for the design and analysis of experiments, such as for example fractional factorials
described in [Box78], is needed to this end.

Phase Description

1. Evaluation environment Design a fitness function from the software
specification. Implement the fitness function in an
evaluation environment.

II. Parameters to vary Choose which parameters of the GP system and
evaluation environment shall be varied.

III. Parameter values Choose parameter values to vary between.

IV. Parameter combinations Choose the combinations of parameter values to use

in the different runs.

V. Generate programs Run the GP system for each combination of
parameter values.

VI. Test programs Test the program variants that have been generated.
Calculate measures of diversity.

VII. Choose programs Choose the combination of programs that give the
lowest total failure probability for the software fault
tolerance structure to be used.

Table 1. Phases of procedure for developing diverse programs by varying parameters to a genetic
programming system

In the next phase (phase V), the chosen combinations of parameter values are supplied to
the GP system which is run to produce the programs. From each run, the best, several or all
of the developed program variants can be kept for later testing. If the program generation is
not successful, iteration back to phases II, III and IV may be necessary. Upon leaving phase
V, we have a pool of programs. Running a GP system is an automatic process and does not
need any human intervention, so the number of programs developed can be large. If we are
to use the programs in a specific software fault tolerance scheme, such as an N-variant
system, we need to choose which programs in the pool to use (phase VII). Calculating

measures of diversity such as the correlation measures in [Littlewood89] or the failure
diversity measure in [Lyu94] might be useful in this task. The measures can be calculated
from the test data generated in phase VL.

In [Littlewood89], systematic approaches to making design choices when employing
design diversity were introduced. If we hypothesize that our choices of parameter values are
analogous to these design choices, the findings in [Littlewood89] might be used to choose
among the combinations of parameter values. A particular set of design choices is called a
design methodology in [Littlewood89] and, if we take our analogy even further, our GP
approach would enable us to try a large number of design methodologies in the same setting.
However, it is unclear whether the use of GP or a common evaluation environment limits the
diversity to be explored such that the variations in design methodologies are only minor. An
experiment to evaluate this is described in section 4 below.

In the following, we list sources of diversity when an approach such as NVP is used and
identifies which GP parameters relate to these sources. Thereafter, the cost issue of using the
proposed GP approach is briefly discussed. Central to the result of applying the described
method is that GP can evolve good solutions in the first place. It is not probable that the
variants can be used if they fail on a large number of input cases. This issue is further
discussed below.

3.2 Comparison of diversity sources

To qualitatively assess the value of the proposed approach, we would like to compare the
sources of design diversity with the parameters we can affect in the GP system and what
effect on the generated program they might have. Table 2 shows a taxonomy of sources of
design diversity and GP parameters that correspond to these sources. The taxonomy is not
intended to be complete but covers the most important aspects mentioned in the literature
(see for example [Saglietti90] and [Lyu94]). The taxonomy has been carried over from the
Software Metrics area [Fenton91]. Our motivation for this is that what can be measured can
be varied and what can be varied, and applies to software and its development, is a potential
source of diversity. Fenton arrives at this taxonomy by viewing a piece of software as a set
of activities (processes) using resources to produce artifacts (products) [Fenton91]. In table
2, a diversity source with leading number 1 is a process, with leading number 2 a product
and with leading number 3 a resource.

We stress that making a comparison like this is not easy; it is not clear-cut how an
approach such as GP can be compared with more traditional software development
techniques.

Source of design diversity GP counterpart

1.1 Specification process Same source

1.2 Design process Choice of allowed structure, functions and
terminals

1.3 Implementation process Program representation, type of GP system

1.4 Testing process Evaluation strategy

2.1 Specification products Same source

2.2 Algorithms Program space parameters

2.3 Data structures Functions, Terminals

2.4 Implementation language ~ Program representation

2.5 Test data Test cases, Testing scheme
3.1 Personnel / Team No direct counterpart

3.2 Tools GP System, Diversity in compiler/linker/loader can
be similarly exploited

Table 2. Correspondence between sources of diversity in traditional design diversity approaches (based
on [Fenton91], [Saglietti90] and [Lyu94]) and our proposed GP approach

Processes. The potential diversity arising from different specification processes and/or types
also can be used with the GP approach. The difference is that each specification must be
implemented in an evaluation environment. The design and implementation processes have
no direct counterpart in GP. With GP, we do not explicitly design the programs; they evolve
to meet our specification. However, the task of choosing parameters, their values and
combinations to be used in the different runs resembles a high-level design activity. We
decide not exactly how the program is to be designed but which major concepts can be used.

The potential diversity from using different implementation processes resembles using
different types of GP system with, for example, different program representations. An
example would be using function trees to represent the programs in one run and using linear
representations in another.

The diversity to be found by different testing schemes has no direct counterpart in GP.
However, choosing the number and values for the test cases to use in evaluating the
programs relates to testing as well as to test data (point 2.5). For different runs, we might
choose to concentrate the test cases in a special region of the input data space. Another
parameter that resembles alternating the test process would be to allow the test cases to
change dynamically.

Products. We cannot directly specify what algorithms and data structures the GP programs
should use. If we were to give two development teams different functions and terminals to
use in their program, however, it might affect what algorithm they used to solve their
problem. If the same reasoning applies to our GP system, we would expect the algorithm
used in the developed programs to differ for runs with different functions and terminals. The
same argument applies for the parameter that determines the permitted structure of the
programs. If we dictate that a development team cannot use any subroutines or cannot use
recursion, that team might not implement a certain algorithm, forcing them to consider other
solutions. In GP, we can introduce functions and terminals that give access to certain types
of data structures, such as indexed memory, lists or stacks.

Some studies have shown that using different implementation language can give rise to
diversity [Lyu94]. The counterpart in GP is the representation language. This could be one of
the earlier mentioned function trees or machine instructions. Other examples are programs
implemented with directed acyclic graphs, functional languages or stack-based
microinstructions.

Resources. The representation languages in GP are often only intermediary. After the GP
run, this intermediate language can be translated into some target language. This makes it
possible to leverage diversity available from using different compilation tools, such as
compilers, linkers and loaders. The personnel and team sources of design diversity have no
direct counterpart in GP. There are many parameters to be set when using GP that have no
direct counterparts in ordinary development methodologies. These should not be viewed as

purely new ways of adding diversity sources since it is probable that a variation in many of
them will have to be restricted considerably for the GP process to find a satisfactory solution.

Summary. There are a large number of parameters in a GP system, and they correspond to
some of the sources of diversity in traditional design diversity approaches. Research is
needed to evaluate which of the parameters, if any, can be used to force the development of
diverse software variants.

We believe that a change in the program space parameters has the greatest potential for
generating diversity since it alters the space of programs that are searched. Furthermore,
changing these parameters is not difficult and does not incur a large cost and thus should be
the focus of a pilot experiment. Changing the parameters of the evaluation environment also
shows potential for diversity. However, the cost of doing so is greater and may involve
developing alternative evaluation environments. Finally, changing the search specific
parameters should primarily change the rate of success for the GP system. Thus these
parameters must be altered to find suitable solutions and may not be available to use for
diversity purposes.

3.3 Cost of using genetic programming

Developing one program variant in GP is an automatic process, once the GP system has been
set-up. It needs a great deal of processing power but can be speeded up by using parallel
computers. The evaluation of individuals in a GP population can be done in parallel, and
different runs can be made in parallel. Compared to a traditional approach to design
diversity, such as NVP, the cost of development will likely be low; NVP uses human
software developers while GP uses processors. This would imply that using GP would
decrease the cost of developing an N-variant system. The initial cost for the GP approach
may be higher, however; we may need to try parameter combinations we have not pre-
specified, and it is unclear how the verification and maintenance costs compare with a
traditional approach.

When using GP, we design and implement an evaluation environment from the
specification, choose which GP parameters to vary and which values to vary between. With
the NVP process, this preparation phase includes administrative tasks such as choosing the
design teams, distributing information to them and managing their work. An additional cost
in the GP approach is converting the developed variants to a format suitable for execution.
The internal representation in the GP system must be converted to binaries for the target
machine. However, this cost can be expected to be low since it can be automated.

The cost issue is further complicated if we take verification and maintenance into
account. It is unclear how the verification costs of the two approaches compare. The
programs developed with GP are generally difficult for humans to read. And cannot be
debugged in the ordinary sense. The programs may need to be reinserted into the GP system
and further developed. Another approach might be to re-run development but emphasizing
requirements on the program differently. Similar approaches may be used when maintenance
is performed on the N-variant system owing to, for example, changing requirements.

3.4 Applicability of genetic programming

We stress that there are serious deficiencies in the theoretical knowledge about genetic
programming. The research field is only a few years old, and the technique has been applied
mostly to toy problems. There is a feeling in the evolutionary computation community that it
is time to “step up” and attack real problems, but there is a risk that GP will not scale up to
more complex tasks. The applicability of our proposed approach is directly tied to the
applicability of GP. If GP cannot be scaled up to larger problems, neither can our proposed
approach.

At its current level of maturity, GP is probably best suited for small and isolated program
components, such as simple controllers, even though this somewhat contradicts the reason
for using software diversity in the first place. The success criteria for control algorithms can
be more easily described than, for example, desktop applications since their effects are
apparent in the physical world (or in a simulation). Furthermore, GP can be applied even if
the underlying control algorithms are poorly understood or not even theoretically known. If
we can implement our requirements in an evaluation environment, GP can be applied.

When using the proposed approach, it is crucial that the evaluation environment is free
from errors. Since the environment is used to evaluate all programs developed, it is a single
point of failure in our development process. This is analogous to the role of the specification
in NVP.

4. Description of experiment

We have used a genetic programming system to conduct two rounds of experiments. In the
first round 80 program variants were developed from the same specification and in the latter
round 320 additional programs were developed. In the following we discuss the results from
the 80-variant experiment. Detailed results from the second round of experiments can be
found in appendix III and the analyses are briefly described in section 6.5.

All programs were developed automatically by a custom developed system running on a
SUN Enterprise 10000 with the Sun Solaris OS 2.5 and Java Development Kit 1.2. The GP
system was run five times for sixteen different settings of parameters. The resulting eighty
programs were subjected to the same 10000 test cases and their failure behavior analyzed to
assess the failure diversity of the programs. Figure 1 gives a sketch of the experiment
environment. Below we describe the target system, the GP system, the design of the
experiment and the testing procedure. A more detailed description is given in appendix L

4.1 Target system

The target system is designed to arrest aircraft on a runway. Incoming aircraft attach to a
cable and the system applies pressure on two drums of tape attached to the cable. A
computer that determines the break pressure to be applied controls the system. By
dynamically adapting the pressure to the energy of the incoming airplane the program should
make the aircraft come to a smooth stop. The requirements on a system like this can be
found in [US Air Force86]. The system has been used in other research at our department
and a simulator simulating aircraft with different mass and velocity is available. The system
is more fully described in [Christmansson98].

: Pool of programs
! GPSys
i . | pl | P2 PN
! 1
! 1
: Program Fitness 1
| l X
| B SRR
| ! 1 Failure 1
I Evaluation X ! evaluation !
1 : ! 1
environment 1 | .

! - I S

1 \ .
: @ 1 . R R R .
| : PR 1
1 .@ ! >z 1
! Simulator : : Simulator I
! i 3 X

1 \ .
1

! e !
1

! 1 -3
PR . Lo R oo !
' A T
: Development 1 @
b o e - :

Failure matrix
with outcome for each
Parameters program and test case

Figure 1. Experiment environment for developing and evaluating airplane arrestment controllers

The main function of the system is to brake aircraft smoothly without exceeding the
limits of the braking system, the structural integrity of the aircraft or the pilot in the aircraft.
The system should cope with aircraft having maximum energy of 8.81%107 J and mass and
velocity in the range 4000 to 25000 kg and 30 to 100 m/s, respectively. More formally the
program should' (name of corresponding failure class in parentheses)

stop aircraft at or as close as possible to a target distance (275 m)

stop the aircraft before the critical length of the tape (335 m) in the system
(OVERRUN)

not impose a force in the cable or tape of more than 360 kN (CABLE)

not impose a retarding force on the pilot corresponding to more than 2.8g
(RETARDATION)

not impose a retarding force exceeding the structural limit of the aircraft, given for a
number of different masses and velocities in [USAF86] (HOOKFORCE)

' Our system adopts the requirements of [USAF 86] with the addition of the allowed ranges for
mass and velocity and a critical length of 335 m (950 feet in [USAF 86]).

10

The programs are allowed to use floating point numbers in its calculations. They are
invoked for each 10 meters of cable and calculate the break pressure, for the following 10
meters, given the current amount of rolled out cable and angular velocity of the tape drum.

An existing simulator of the system has been ported from C to Java. It implements a
simple mechanical model of the airplane and braking system and calculates the position,
retardation, forces and velocities in the system. It does not model the inertia in the hydraulic
system or oscillatory movement of the aircraft due to elasticity in the tape. The simulator has
been set to simulate braking with a time step of 62.5 milliseconds.

4.2 Genetic programming system

Our development system is built on top of the GPSys genetic programming system written in
Java by Adhil Quereshi at the University College in London. The programs in this system
are function trees, which are interpreted when used in braking the aircraft. During evolution
GPsys invokes the simulator to evaluate the fitness of programs. Values from the simulation
are used to assign penalty values on the four fitness criteria. The penalties are assigned in a
non-linear fashion with high values when the program fails on the criteria. For the
OVERRUN criteria:
e [f the stop position of the aircraft is larger than the critical length of the system a
basic penalty is assigned. The basic penalty was chosen as 80% of the maximum
penalty for the criteria.

e A guiding penalty is assigned if the velocity of the aircraft is larger than zero on the
critical length. This is to distinguish programs that almost succeeded in braking the
aircraft from programs that haven’t even tried and “guides” the programs in the
direction of good performance. The basic penalty was chosen as 20% of the
maximum penalty for the criteria.

e [f the aircraft comes to a halt, a linear penalty is assigned. It diminishes from its
maximum value at position O up to the target distance and then increases up to its
maximum again at the ciritcal length. This is to ensure that a halt position close to the
target distance will give the program a low penalty. The maximum amount of linear
penalty is a parameter to the system but is typically much smaller than 80%.

The penalties for the other criteria are assigned in a similar manner. For more details
consult appendix I. The penalty values on the four criteria are summed to give the total
fitness for the test case. The total fitness of the program is the sum of the finesses on all the
test cases. A perfect program would get a fitness value of zero.

4.3 Testing procedure

After each run of the GP system the best program is evaluated on 10000 test cases evenly
spread on the range of valid masses and velocities. Dividing the range of allowed mass into
100 location 212.12 kg apart generates these test cases. For each mass a maximum velocity
is calculated so that the resulting energy does not exceed the 8.81%107 J specified in
[USAF86]. The range [30, max velocity for this mass] is divided into 100 velocities and a
total of 100*100=10000 test cases result.

11

4.4 Experimental design

The discussion in section 3.2 argued that the program space defining parameters (PSP)
should have the largest effect on the diversity of the resulting programs. The parameters to
the evaluation environment (EP) should also have an effect while the search parameters (SP)
may primarily affect the effectiveness of the GP system. In accordance with this we have
chosen to vary four program space parameters, three evaluation environment parameters and
one search parameter. Many of these parameters can take multiple values giving rise to an
enormous number of combinations. To make a study feasible we have confined the
parameters to two levels, represented by ‘-° and ‘+’. The parameters and their levels are
listed in table 2. More details on the choice of parameters and levels can be found in
Appendix I. All other parameters to the system were held constant during the experiment.
Each run used 1000 programs in the population and ran for 200 generations.

The result of a GP run is not deterministic and we need replicated runs for each setting of
the parameters. The number of unique settings of eight 2-valued parameters is 256 but we
used a 2(8-4) fractional factorial of resolution IV to reduce this to 16 [Box78] [USAF86].
The settings of the parameters are shown in table 3, where a ‘-* indicate the ‘low’ level of the
parameter and a ‘+ indicate the ‘high’ level. Once the order in which to run the 80
experiments had been randomized the experiment was started. The system ran the 80 runs
over a course of five days without any human intervention.

12

Factor Level Description
- No effect.
A + The statement IF, and operators LE, AND and NOT can be
used in the programs.
B - No effect.
+ The functions SIN and EXP can be used in the programs.
i The average velocity, average retardation, and the index to
the current checkpoint can be used in the programs.
C The angular velocity, current time since start of the braking,
+ the previous angular velocity and the time of the previous
checkpoint can be used in the programs.
- Programs cannot use any subroutines.
D Two subroutines (automatically defined functions) can be
+ used in the program. They are evolved in the same manner
as the rest of the program.
i Maximum penalty on the RETARDATION failure criteria is
B 1000.0.
Maximum penalty on the RETARDATION failure criteria is
.+_
2000.0.
- Linear penalties are not used.
F + Linear penalties are used and a maximum penalty of 30.0 is
assigned on each failure criteria.
25 test cases uniformly spread on the range of possible
- values for mass and velocity are used to evaluate fitness
G during evolution.
+ 25 test cases chosen randomly for each run of the GP system
are used to evaluate fitness during evolution.
0 - Probability of mutation is 0.05.
+ Probability of mutation is 0.6.

Table 2. Factors that are varied in the experiment

13

Setting A B C D E F G H
1 .

2 + - - - -+ o+ +
3 -+ - -+ -+ +
4 + + - -+ 4+ - -
5 - -+ -+ 4+ 4+ -
6 + -+ - 4+ - - +
7 -+ o+ - -+ - +
8 + + + - - -+ -
9 - - -+ o+ o+ - +
10 + - -+ 4+ - o+ -
11 -+ -+ - 4+ -
12 + + - o+ - - - +
13 - -+ + - -+ +
14 + -+ + - o+ - -
15 -+ o+ + o+ - - -
16 + 4+ + + 4+ + + +

Table 3. Fractional factorial design of experiment with levels for the parameters at each setting

5. Experimental results

For each test case executed, a trace of the braking of the airplane is returned from the
simulator. Four values are extracted from this trace to classify the behavior of the program:
halt distance of the aircraft, maximum force in the cable, maximum retardation force on the
hook and maximum retardation during the braking. These values correspond to the four
fitness criteria above. We record a failure for a particular variant on a particular test case if
any value exceeds its limits. Failure is indicated by one (1) and success by zero (0) and these
binary values are collected into a failure behavior vector giving the failure behavior on a
particular test case.

14

Setting Runl Run2 Run3 Run4 Run5 Average Py

1 1083 708 813 1327 1475 1081.2 89.19%
2 591 2100 648 1746 831 1183.2 88.17%
3 893 1275 888 1016 1150 1044.4 89.56%
4 2203 2694 1644 2639 1240 2084 79.16%
5 588 670 1657 559 1159 926.6 90.73%
6 801 559 965 753 2968 1209.2 87.91%
7 499 697 575 1054 985 762 92.38%
8 998 586 1479 767 713 908.6 90.91%
9 3146 2429 3609 2374 2408 2793.2 72.07%
10 1200 1433 1212 1063 2112 1404 85.96%
11 809 1432 1140 870 1027 1055.6 89.44%
12 1726 755 1782 2255 1789 1661.4 83.39%
13 811 996 852 754 1578 998.2 90.02%
14 392 1177 2240 1026 942 1155.4 88.45%
15 1108 1053 630 2388 560 1147.8 88.52%
16 2946 1111 1005 827 954 1368.6 86.31%

Table 4. The number of failures for each of the 80 versions, the average and the average success
probability for each setting of the parameters

The quality of the eighty programs varies highly. Table 4 shows the observed failure
rates of the variants. The average number of failures is 1298.96 (Probability of success,
Pgyce = 87.01%) with a standard deviation of 712.89 failures. The best program failed on
392 test cases (Pgyce = 96.08%) while the worst failed on 3609 (Pgycc = 63.91%). The top
ten performing programs are shown in bold face in table 4. The average number of failures

among them is 553.90 (Pgycc = 94.46%) with a standard deviation of 65.93 failures.

15

Failure probability for randomly chosen input

Distribution of failure probabilities for 80 versions

0.25 ‘ ‘ ‘ ‘ ‘

0.2 i

0.15 i

0.1 .

0.05 .
%o 10 20 30 40 50 o 70 80

Number of versions failing

Figure 2. Distribution of failure probabilities for a randomly chosen input

Many programs failed on the same test case. Figure 2 shows the probability that n of the
eighty variants fail on a randomly chosen test case among the 10000 test cases. There are no
test cases for which all programs fail but many test cases seem to be troublesome for the
programs. For example, there are 22 test cases on which 79 of the programs fail and 24 test
cases on which 78 fail. This indicates that some test cases are more difficult than others. The
variability in difficulty is shown in a contour plot in figure 3. Darker areas show regions
where more programs fail.

The structural diversity of the programs varies. A simple measure of this diversity was
recorded: the size of the program trees. The average size is 100.20 nodes in the tree with a
standard deviation of 82.87. The maximum size is 459 and the minimum size is 17. No
correlation was found between the size of the programs and the number of failures they
exhibited (correlation coefficient 0.05). The average size of the top ten programs is 84.80
with a standard deviation of 46.07. The maximum size is 185 and the minimum is 38.

16

Test case difficulty

——- Increasing velocity ——>

——- Increasing mass ——>

Figure 3. Contour plot of test case difficulty

6. Evaluation of results

Below we evaluate the failure diversity, test case difficulty variability and performance of 3-,
5- and 7-variant systems constructed from the programs and briefly describe the analysis of
the second round of experiments with a total of 400 variants. The failure diversity is
evaluated between the individual programs and between the different methods defined by
our 16 different settings of parameters. A statistical test is performed to evaluate if varying
the parameters to the system generates diversity.

6.1 Failure diversity

Different measures of diversity have been proposed in the literature. In [Littlewood89],
Litttlewood and Miller propose that the amount of diversity between two design methods
should be measured using the correlation coefficient of the joint distribution of their failures.
Their measure is theoretical since it should be applied for all input cases and programs that
can be developed with the methods. We have used it in the same way that Littlewood and
Miller use it in their examples; by disregarding difficult issues of statistical sampling
[Littlewood89]. Another failure diversity measure was used in [Lyu94]. It is defined as the
number of distinct failures divided by the total number of failures, and below we denote it
LFD.

Between programs. The diversity measures were calculated pairwise for all eighty

17

programs. The minimum correlation’ was —0.2131 and of the 3160 correlations 193 (6.11%)
were below zero. The maximum LFD was 0.9894. This is encouraging since low
correlations and high failure diversity indicates that taking a vote among variants can mask
effects of failures. However if we consider only the top ten programs the picture is different.
The lowest pairwise correlation found is 0.5495 and the highest pairwise LFD is 0.5965.

Between methods. We have calculated the 120 inter-method correlations where each setting
of the parameters to the GP system is considered a unique method. The majority of the
correlations are high but 8 are below 0.20 and two are negative. This was surprising and
indicates that the variability of difficulty of the test cases may be overcome and the program
variants can show better than independent failure behavior. However, the majority of
methods involved in the lowest inter-method correlations are the ones having highest
average failure rate. Thus, even if we pick programs for N-variant systems from methods
showing low correlation, the failure rate of the system will probably not level that of the top
performing programs.

Inter-method vs. intra-method diversity. To evaluate if diversity can be obtained by
altering the parameters to the GP system we wanted to assess whether there is more diversity
between variants in different methods than within the same method. To this end we used the
following procedure:

¢ Randomly choose one method (A) and two distinct programs (A1 and A2) from it

e Randomly choose a program not in A and call it B1

e Compare the diversity between Al and A2 with the diversity between Al and B1. If
the latter is larger than the former the outcome of the test is called positive.

Under the null hypothesis that there is no difference in diversity between the variants due
to the different methods used the number of positive outcomes when the above procedure is
repeated should be binomially distributed with n = the number of repetitions of the test and p
=0.5.

For each of the two diversity measures we performed 10000 test procedures. For the
correlation measure 6370 positive outcomes were recorded and for the failure diversity
measure 6365 positive outcomes. The null hypothesis could be rejected at the 0.01 level for
both of the diversity measures (both with p-value < 10-10) and we favor the hypothesis that
the failure diversity is larger between variants developed with different settings of the GP
parameters than between variants with the same settings.

The top ten programs do not make up a sufficient data record on which to perform this
hypothesis testing. Instead, the procedure was applied on the 11 methods with an average
failure rate below the total average®. In 10000 repetitions of the procedure 5613 (5551 with
the failure diversity measure of Lyu et al) positive outcomes were recorded. Thus, the null
hypothesis still could be rejected at the 0.01 level (both with p-value < 10-10y,

? Calculated as the correlation between the failure behavior vectors. This is a special case of the
Littlewood and Miller correlation measure when there is only one variant in each method.
* Hence, methods number 4, 9, 10, 12 and 16 were excluded

18

6.2 Test case difficulty variability

Detailed study of the test case difficulty variability pictured in figure 3 reveals that there are
three main areas of difficulty. Visually these areas is located in the upper left corner, in
equidistant clusters in the center and in the upper right corner, respectively.

For the upper left corner, where aircraft have high velocity and low mass, the programs
generally fail on the RETARDATION criteria. It seems plausible to assume that these
failures arise because the programs do not properly measure and/or use a notion of the mass
of the incoming aircraft in their control algorithm.

The failures in the center area are mainly due to failure on the HOOKFORCE criteria.
The requirements in [USAF86] stated the maximum allowed hook force for certain “points”
with specified mass and velocity. The clusters of failing programs seen in the center of figure
3 are located below (lower velocity) and to the left (lower mass) of these points. These are
the areas where the energy of the aircraft is at a maximum for the requirement of maximum
hook force. In this light the clusters can almost be expected to appear.

The failures in the upper right corner are made up of failures on the HOOKFORCE and
HALTDISTANCE criteria. The former can be explained by the same reasoning as above and
the latter arises because the energies of the aircraft take on their largest values this area. If
the programs do not exert a high enough brake pressure in the start of the braking they will
not have time to brake the aircraft before the critical length.

6.3 3-variant systems constructed from the programs

We constructed 3-variant systems from our programs. The majority vote between the failure
behaviors of the programs was taken as the outcome if voting had been applied during the
brakings. We believe that this is a worst-case scenario, but have not investigated it further. If
the voting is applied in the checkpoints during the braking failures that occur at different
points in time might be masked. For example, this would happen if program 1 exceeds the
maximum allowed retardation early in the braking but after that performs well and program
2 have the opposite behavior (good performance early, failing in the end). With our post-run
voting the behavior of the system would be deemed a failure regardless of the fact that actual
voting at the checkpoints would mask the failures.

We considered all the 120 possible N-variant systems consisting of 3 programs taken
from the top ten programs. In 41 (34.17%) of them the failure rate of the system was lower
than the minimum failure rate of the individual programs. The best improvement found,
compared to the minimum failure rate of the individual programs in the system, was a
decrease from 559 to 444 failures (20.57%).

We also compared the performance of the best 3-variant systems to the performance of
the best individual programs. Table 5 shows the top 25 programs or systems. In the table, the
column marked “Type’ shows the type of system with ‘Ind’ indicating an individual program
and ‘3VS’ a 3-variant system. The column ‘Failures’ shows the number of failures. If the
system is a ‘3VS’ the column ‘Improvement’ shows the percent improvement in failure rate
of the system compared to the best of the individual programs in the system.

As can be seen in the table no 3-variant system performed better than the best individual
program. However, the 3-variant systems dominate the top list and only two individual
programs perform good enough to qualify.

19

Rank Type Failures Improvement

1 Ind 392 NA

2 3VS 444 11.02%
3 3VS 444 20.57%
4 3VS 444 20.57%
5 3VS 449 19.68%
6 3VS 455 18.60%
7 3VS 463 721%
8 3VS 464 16.99%
9 3VS 465 16.82%
10 3VS 467 16.46%
11 3VS 469 16.10%
12 3VS 470 5.81%
13 3VS 474 15.21%
14 3VS 484 3.01%
15 3VS 485 13.24%
16 3VS 490 12.34%
17 3VS 493 11.81%
18 Ind 499 NA
19 3VS 504 10.00%
20 3VS 515 1.87%
21 3VS 520 7.14%
22 3VS 524 6.26%
23 3VS 525 6.08%
24 3VS 525 6.25%
25 3VS 526 5.90%

Table 5. Top 25 performing individual programs and 3-variant systems

6.4 5- and 7-variant systems constructed from the programs

Five and seven variant systems was also constructed from the top 10 programs. No systems
were found that improved upon the failure rate of the individual program in the system with
the lowest failure rate.

6.5 Analysis of 400 variants

An additional 320 programs were developed in a second round of experiments. In this round,
twenty programs were developed for each of the sixteen settings. The analyses above were
carried out on the total of 400 programs and the detailed results can be found in Appendix
111

The results from these analyses are much the same as the ones given above with one
notable exception. The negative and small inter-method correlations are not as frequent; only

20

one inter-method is below 0.20 (0.0785 between settings 9 and 14). This indicates that the
smallest correlations for the 80 variant analysis may be sampling errors.

7. Discussion and conclusions

We have proposed a procedure for developing diverse software variants and shown that the
variants can be forced to be diverse by varying parameters to the genetic programming
algorithm used to develop the programs. The low levels of inter-method diversity found
between some settings of the parameters were surprising. It indicates that voting in an N-
variants system could mask individual program failures. However, the methods giving the
lowest correlations also are the ones with the highest failure rates, and the diversity cannot
be exploited to give failure rates lower than the top performing programs. The diversity
levels found in the top performing programs was much lower. Further analysis will be
conducted to find out if the poor performance can be said to cause the high diversity.

The observed behavior may be explained by the special nature of the target system. It
shows high level of input case difficulty variability, which is known to limit the amount of
exploitable diversity [Littlewood89]. The difficulty arises from the fact that higher energies
put more stress on the system. If this amount of input case variability is typical is not known.
Further experiments with other target systems can shed light on this issue.

In our experiments we have varied eight parameters to the GP system. It is possible that
different choices of parameters and their values would give different results. For example,
the apparent problem of the programs to brake light aircraft with high velocities may be
overcome by letting them use an indexed memory, making comparisons between values at
different checkpoints possible. Further analysis of the experimental data should focus on
revealing the effects of different parameters on the failure rate and diversity of the generated
programs. The fractional factorial experimental design we have employed is well suited to
this end. The diversity may also be limited by choices we made for the basic system design.
For example, better results may be achieved if the programs get to calculate the break
pressure more frequently during a braking. This would probably require a smaller time step
in the simulation and lead to higher performance demands during program development. We
will investigate tools for compiling the experimental environment to native machine code.
The increase in performance will allow larger populations and longer runs of the GP system,
possibly resulting in better program performance.

Our classification of a failure can be considered worst-case. When comparing the failure
behavior of programs we do not compare each failure criteria individually. Thus, diversity in
the way the programs fail is not accounted for even though it might be exploited in a system
employing fault masking. Our failure classification does not take the time aspect of the
program behavior into account. A situation can easily be envisioned where two programs
both exceed the maximum allowed hook force but at different times. This faulty behavior
might be masked by an N-variant system. It would be interesting to actually construct N-
variant systems from our programs and evaluate their failure behavior.

Further experimentation with the existing system will be conducted since it mainly
amounts to initiating runs and collecting and analyzing data; the development of the
programs requires no human activity. Having large numbers of software variants that adhere
to the same specification may prove an important step in understanding software diversity
and its limitations. The approach described in this paper is not limited to genetic
programming. It can be used with other techniques for program generation or induction to

21

obtain more sources of diversity. It would be interesting to extend our work and compare
different techniques of this kind.

Investigating how new computational models, such as evolutionary computation, affect
and can be used in the field of software reliability and fault tolerance is interesting and
generates many ideas. We believe that a well of inspiration for building reliable computing
systems can be found by studying nature and biological organisms as suggested in
[Avizienis95].

8. References

[Avizienis77] AVIZIENIS, A. and CHEN, L.: ‘On the implementation of N-variant
programming for software fault-tolerance during program execution’, Proc. of
COMPSAC-77, 1977, pp. 149-155

[Knight86] KNIGHT, J. C. and LEVESON, N.: ‘An experimental evaluation of the
assumption of independence in multivariant programming,” I[EEE Trans. on
Software Engineering, 12 (1) pp. 96-109

[Lyu94] LYU, M., CHEN, J-H. and AVIZIENIS, A.: ‘Experience in metrics and
measurements for N-variant programming,” Int. Journal of Reliability, Quality
and Safety Engineering, 1 (1) pp. 41-62

[Littlewood89] LITTLEWOOD, B. and MILLER, D. R.: ‘Conceptual modelling of
coincident failures in multivariant software,” IEEE Trans. on Software Eng., 15
(12) pp. 1596-1614

[Hatton97] HATTON, L.: ‘N-Variant design versus one good variant’, IEEE Software, 14
(6) pp- 71-76

[Koza92] KOZA, J. R.: ‘Genetic programming - on the programming of computers by
means of natural selection” (MIT Press, Cambridge, Massachusetts, 1992)

[Bick97] BACK, T., HAMMEL, U. and SCHWEFEL, H-P.: ‘Evolutionary computation:
comments on the history and current state,” IEEE Trans. on Evolutionary
Computation, 1 (1) pp. 3-17

[Koza97] KOZA, J. R. (ed): ‘Proceedings of Second Annual Conf. on Genetic
Programming July 13-16, 1997’ (Morgan Kaufmann, San Fransisco, California,
1997)

[Nordin95] NORDIN, P. and BANZHAF, W.: ‘Real time evolution of behavior and a world
model for a miniature robot using genetic programming’, Technical Report 5/95,
Department of Computer Science, University of Dortmund, 1995

[Ryan96] RYAN, C. O.: ‘Reducing premature convergence in evolutionary algorithms.’

PhD Dissertation, Computer Science Department, University College, Cork,
1996

[Banzhaf98] BANZHAF, W., NORDIN, P., KELLER, R. and FRANCONCE, F.: ‘Genetic
programming - an introduction’ (Morgan Kaufmann, San Fransisco, California,
1998)

[Zhang97] ZHANG, B-T. and Joung, J-G.: ‘Enhancing robustness of genetic programming

at the species level’, Proc. of Second Annual Conference on Genetic
Programming, July 1997, Stanford University, USA, pp. 336-342

22

[Box78] BOX, G. E., HUNTER, W.G., and HUNTER, J.S.: “Statistics for experimenters -
an introduction to design, data analysis and model building’ (John Wiley &
Sons, New York, 1978)

[USAF86] US Air Force — 99: ‘Military Specification: Aircraft Arresting System BAK-
12A/E32A; Portable, Rotary Friction’, MIL-A-38202C, Notice 1, US
Department of Defense, 1986

[Christmansson98] CHRISTMANSSON, J.: ‘An exploration of models for software faults
and errors’, PhD Dissertation, Department of Computer Engineering, Chalmers
University of Technology, 1998

[Avizienis95] AVIZIENIS, A.: ‘Building dependable systems: how to keep up with
complexity’. Special Issue from FTCS-25 Silver Jubilee, June 1995, Pasadena,
California, pp. 4-15

[Saglietti90] SAGLIETTI, F.: ‘Strategies for the acheivement and assessment of software
fault-tolerance’. IFAC 11™ World Congress on Automatic Control, Tallinn,
USSR, 1990, pp. 303-308

[Fenton91] FENTON, N. E.: ‘Software Metrics - A Rigorous Approach’. (Chapman & Hall,
1991)

23

Appendix 1. Detailed description of the experiment
environment

Below we give additional information on different parts of the experiment environment: the
genetic programming system, Java system, the custom developed Java code, parameter
values for the GP system, parameters that are varied in the experiment, design of the
factorial experiment, fitness evaluation, the runs of the system and the analysis performed.

Genetic programming system

We have used versions 1.1 of the GP system called ‘GPSys’ developed by Adil Quereshi at
the University College in London. This version of the system was released on the 30" of
June 1997 and can be downloaded for free from the following web site:

http://www.cs.ucl.ac.uk/staff/ucacaxq/gpsys_doc.html

(if this URL is no longer valid you can contact the author of this paper to get a copy of the
GPSys system).

GPSys is a strongly typed steady-state genetic programming system written in Java. It
requires Java version 1.1 or later. The system is structured into a base package and a package
of primitives, i.e. the terminals and functions that can be used in the development of
programs. Both packages are object oriented and can be easily extended by writing
additional Java classes. The system have support for automatically defined functions, i.e.
sub-routines.

The major drawback of the system is that it is not compiled into a native machine
language; the performance of the system is relatively poor.

Java system

We have used SUN’s Java development kit 1.2 with the sunwjit just-in-time compiler. The
first time a Java class is loaded it is compiled to machine code for the Sun Sparc architecture
and can be executed with greater performance on following invocations. The speed-up
achieved with the jit compiler was between 2-3 times.

Custom developed Java code

A total of 28 Java classes were developed to extend the GPsys system with additional
functionality needed in the chosen application. These classes contain a total of 1724 lines of
source code (comments excluded). Fifteen of the classes implement the evaluation of the
programs by interfacing to the simulator defining test cases, assembling information about
the braking, evaluating the braking and assign a fitness score. Thirteen classes interface with
the GPSys system and the user. They are implemented so that the levels for the factors
determining the parameter values that are varied can be given from the command line
interface when an experiment is started.

Parameter values for the GP system

24

Eight different parameters were allowed to vary in the experiments. Table 6 below shows the
values of the parameters that did not vary between different runs. When ADF were used two
ADF’s were allowed: ADF1 and ADF2. The values of parameters for these ADF’s are
shown in table 7 and 8, respectively.

Parameter Value

Generations 200

Population size 1000

Tournament size 5

Max depth of program trees at creation 7

Max depth of program trees 19

Max depth of mutation trees 3

Create Method Ramped-half-and-
half

Table 6. Values of parameters that were not varied during the experiments

Parameter Value

Max depth of program trees at creation 5

Max depth of program trees 9

Max depth of mutation trees 3

Functions allowed Add, Sub, Mul, Div, If, GE, LE,
ADE2

Terminals Argl, Arg2, Arg3, Double
constant

Create Method Ramped-half-and-half

Table 7. Values of parameters in ADF1

Parameter Value

Max depth of program trees at creation 5

Max depth of program trees 9

Max depth of mutation trees 3

Functions allowed Add, Sub, Mul, Div
Terminals Argl, Arg2, Double constant
Create Method Ramped-half-and-half

Table 8. Values of parameters in ADF2

Factors that are varied in experiments

Of the eight factors varied in the experiment four (A, B, C and D) are program space
parameters (PSP). Factors A and B allows the use of additional functions. When factor A is
on its high level (indicated with a ‘+’ in table 2) the programs can use the ‘function’ IF and
the three operators LE (Larger-than-or-equal), AND (logical And), and NOT (logical
negation). When factor B is on its high level the functions SIN and EXP can be used in the

25

programs. It was thought that these functions might give diverse algorithms since they are
suited to model oscillatory and damping behavior, respectively. Factor C governs what
terminals can be used by the programs and factor D governs if subroutines can be used.
When it is on its high level two subroutines can be used in the programs. The subroutines are
evolved together with the main program.

Three factors (E, F and G) are evaluation parameters (EP) affecting how the programs are
evaluated. Factors E and F alters different aspects of the fitness evaluation while factor G
affects the number and choice of test cases. When factor G is at its low level (indicated with
‘-*in table 2) the test cases are evenly distributed on the range of allowed values of mass and
incoming velocity. When it is on its high level the values for mass and velocity are randomly
chosen.

One factor (H) is a search parameter (SP) governing the probability of mutation in the GP
system. Initial runs indicated that high values might be beneficial.

Design of the factorial experiment

The defining relation for the factorial experiment is [Box78]:
I=BCDE = ACDF = ABCG = ABDH
To generate the 16 different settings we listed all 16 combination of factor levels for the

factors A, B, C and D. From the defining relations the values for the remaining factors was
calculated according to

E =B*C*D
F = A*C*D
G = A*B*C
H = A*B*H

where a ‘+’ is assigned the value ‘+1° and ‘-° the value ‘~1’. For more information on
these issues see [Box78].

Fitness evaluation

When program evaluation takes place a program is tested on a number of test cases, i.e. air
planes with a certain mass and velocity, coming in to land on a runway. An aircraft is
characterized by its mass and incoming velocity. The braking is simulated in time steps and
at each time step a number of data about the braking is logged. The data is the position,
velocity and retardation of the aircraft, the force on the hook of the aircraft, the force in the
cable, and the pressure applied on the tape drum by the braking system.

After each braking the logged data are analyzed to evaluate if any of the four success
criteria have been violated. On each criteria a penalty value is assigned and these values are
added to give the penalty value on the braking. Bu summing the penalty values for all the
brakings an aggregated penalty value is obtained. The penalty value is used as an “inverse”
fitness value so that high penalty indicates low fitness and low penalty indicates high fitness.
A “perfect” individual has a penalty value of zero indicating that no success criteria were
violated, i.e. the program adhered completely to the specification, on the test cases.

The halt distance criteria (OVERRUN) ensures that the aircraft were arrested before the
critical length of 335 meters. If the program did not succeed, i.e. the airplane speed was
larger than zero at the critical length of 335 meters, a basic penalty of 800 units is assigned.

26

Penalty value

An additional penalty of maximum 200 units is assigned linearly based on how much the
velocity of the airplane was when it exceeded the critical length. The maximum value of 200
is added when the velocity at the critical length is the same as the incoming velocity, i.e. the
system has not even tried to brake the system. When the system has been able to brake the
aircraft before the critical length a small penalty is assigned based on how much the braking
distance deviates from the target distance of 275 meter. This penalty increases from zero at
the target distance to a maximum of 30 units at the critical length and at the engaging
position. The penalty assignment on this criterion is shown in figure 4 below.

Penalty assigned on the OVERRUN criteria
1000 T T T T

900 -

800 - 1

700 - 1

600 - 1

500 - 1

400 - T

300 1

200 - 1

0 50 100 150 200 250 300 350
Halt distance [meter]

Fig 4. Penalty assignment on the OVERRUN criterion

The hook force criteria (HOOKFORCE) is parameterized on the maximum hook force
that the aircraft can handle. These maximum hook forces are taken from the specification
and can be found in a table in the document [USAF86]. The table gives the maximum
allowed force in the hook on the aircraft with a specified mass and incoming velocity for a
total of seventeen different mass and velocity “points”. For masses and velocities not given
in the table we have used the value of the closest given point that have the smallest higher
mass and smallest higher velocity. This divided the mass and velocity plane into 17 boxes
where the same maximum hook force is allowed. However, with the additional requirements
we posed on the system that it should handle velocities up to 100 m/s and masses up to
25000 kg some parts is not covered by the 17 boxes. For these points we have used a
formula obtained from the seventeen given values using linear regression.

If the maximum hook force exerted during a braking has been larger than the maximum
hook force that the aircraft can handle, called the critical hook force, a basic penalty of 800
units is assigned. A linear extra penalty is assigned for maximum hook forces over the

27

critical hook force taking the maximum value of 200 units at two times the critical hook
force. A small linear penalty is assigned that has a value of zero at a maximum hook force of
zero and the value 30 units at the critical hook force. An example of a penalty assignment on
this criterion, for a critical hook force of 220.2 kNN for aircraft with masses in the range
[13608, 18144] kg and velocities in the range [61.8, 72.1] m/s, is shown in figure 5 below.

Penalty assigned on the HOOKFORCE criteria
1000 T T T T =

900 - _ - 4

800 q

700 b

500 - b

Penalty value

400 - B

300 B

e e R I I I I
0
0 50 100 150 200 250 300 350 400 450
Maximum hook force exerted on the aircraft during braking [kN]

Fig S. Penalty assignment on the HOOKFORCE criterion with a critical hook force of 220.2 kN

The penalty for the CABLEFORCE and RETARDATION criterion is assigned in the
same way as the HOOKFORCE criterion above. The only differences is the critical value
where the penalty value changes abruptly. For the CABLEFORCE criterion this critical
value is the maximum allowed force in the cable that the braking system can handle. For the
particular system used the value is 360.0 kN. For the Retardation criteria the critical value is
2.8*g, which is chosen to ensure that the pilot will not pass out during the braking.

Additional details about the runs

Each run of the development system has got a unique experiment number. The output from
each run is four files: the experiment file, the failure data file, the log file and a file with the
best of run individual.

The experiment file is a complete description of the experiment logging the experiment
number, start time, duration of the run, the factor levels and the parameter values, fitness and
complexity of the best-of-run individual, and a summary of the evaluation results.

The failure data file contains the result from the 10000 test cases. A number is output for
each test case. The four low-order bits of the number corresponds to the four different failure
classes and if a bit is ‘1’ the best-of-run individual failed on these criteria for this particular
test case.

In the log file data about each generation of the run is logged during the run. For each
generation the average fitness, average complexity, best individual, fitness of best individual

28

and complexity of best individual is printed in the log. The log data can be used to analyze
the evolutionary process.

The best-of-run individual is saved in binary form so that it can be loaded at a later time
for additional tests.

Execution time of the runs

The execution time of the runs varied a lot. For the eighty programs the mean execution time
was 19756 seconds, i.e. about 5 and a half hours. The standard variation was 9105 seconds,
i.e. about 2 and a half hours. However, since each run can be run separately and the
computer contained a total of fourteen CPU’s the runs were parallellized and the
experiments could be completed in a shorter time span.

The execution time is highly dependent on the use of the Java interpreting programming
language. Using a GP system implemented in C och C++ or even a GP system using machine
language for the program representation should decrease the execution times considerably. Nordin
have reported speed-up factors of over 1000 times using a machine language representation
[Banzhaf98]. Using an environment like that of Nordin would allow larger populations and more
generations which should increase the likelihood of finding good solutions with small failure rates.

The process of starting experiment runs was automated so the process could be initiated and then
left on its own.

Analysis of experiments

Analysis are performed off-line using MATLAB. Scripts have been written for the analyses
and once all the experiment numbers have been listed and been read into MATLAB the
scripts performs the analyses. The results are written to an output file and figures are
generated from MATLAB and written on files. An example of such a file is shown in
appendix II and III below.

29

Appendix II. Detailed results from the analysis of 80
variants

The analysis of the failure behaviors was carried out in MATLAB. A MATLAB-script runs
the analyses and outputs the results in textual form to a file. Below the resulting file from the
analyses of the 80-variant experiment described in section 4 and 5 are shown.

Tests and analyses for technical report 98-13 on the GPBRExperiments using 80 versions

Average number of failures: 1298.96 (Psucc=87.01%)
Standard deviation: 712.89

Best program, number of failures: 392 (Psucc=96.08%)
Worst program, number of failures: 3609 (Psucc=63.91%)
Top 10, Average number of failures: 553.90 (Psucc=94.46%)
Top 10, Standard deviation: 65.93

Graph showing probability that n versions out of 80 versions
fail on a randomly chosen test case among the 10000 test cases was written to file

fig_probfailure.eps

Number of testcases that fail on 80 versions: 0

Number of testcases that fail on 79 versions: 22
Number of testcases that fail on 78 versions: 24
Number of testcases that fail on 77 versions: 15
Number of testcases that fail on 76 versions: 14
Number of testcases that fail on 75 versions: 9

Number of testcases that fail on 74 versions: 11
Number of testcases that fail on 73 versions: 21
Number of testcases that fail on 72 versions: 23
Number of testcases that fail on 71 versions: 35
Number of testcases that fail on 70 versions: 33

Contourplot of testcase difficulty variability written to file
fig_testcase_difficulty.eps

Structural diversity

Average size: 100.20
Standard deviation: 82.87
Max size: 459

Min size: 17

Correlation between size and failure rate: 0.05

Top 10 programs
Average size: 84.80
Standard deviation: 46.07
Max size: 185

Min size: 38

30

Failure diversity

1, Between programs

All programs:

Minimum correlation: -0.2131

Number of correlations: 3160

Negative correlations: 193.00 (6.11%)

Small correlations (<0.2): 574.00 (18.16%) Note that the negative correlations are included in the small
correlations.

Maximum failure diversity: 0.9894

Top programs:
Minimum correlation: 0.5495
Maximum failure diversity: 0.5965

2, Between methods

Number of intermethod correlations: 120

Number of negative correlations: 2

Number of small correlations (<0.2): 8 Note that the negative correlations are included in the small

correlations.

The 20 smallest inter-method correlations:

Method 1 Method 2 Correlation
9 14 -0.0454
9 11 -0.0180
9 12 0.0766
1 9 0.0978
7 9 0.0994
8 9 0.1322
4 14 0.1685
9 13 0.1869
4 11 0.2604
3 9 0.2758
9 10 0.2887
4 12 0.3080
2 9 0.3224
1 4 0.3703
4 7 0.3754
6 9 0.3832
5 9 0.4227
4 8 0.4367
9 16 0.4735
5 14 0.4963

3, Inter- vs. Intra
All programs:

The number of possible binomial tests: 24000
Number of tests performed: 10000

Correlation measure gave 6370 positive outcome.

31

Null hypothesis can be rejected at the 0.0100 level (p=0000)
Diversity measure gave 6365 positive outcome.
Null hypothesis can be rejected at the 0.0100 level (p=0000)

For methods that are better than average:

Methods worse than average that are NOT included: 4 9 10 12 16
Methods better than average: 1 2 3 5 6 7 8 11 13 14 15
Number of methods used in the tests below: 11

The number of possible binomial tests: 11000

Number of tests performed: 10000

Correlation measure gave 5613 positive outcome.

Null hypothesis can be rejected at the 0.0100 level (p=0000)
Diversity measure gave 5551 positive outcome.

Null hypothesis can be rejected at the 0.0100 level (p=0000)

For methods that are better than second average (average of the ones that were better than average above):

Methods worse than second average that are NOT included: 1 2 3 4 6 9 10 11 12 14 15 16
Methods better than second average: 5 7 8 13

Number of methods used in the tests below: 4

The number of possible binomial tests: 1200

Number of tests performed: 1200

Correlation measure gave 718 positive outcome.

Null hypothesis can be rejected at the 0.0100 level (p=5.3169¢e-12)
Diversity measure gave 695 positive outcome.

Null hypothesis can be rejected at the 0.0100 level (p=2.2891e-08)

Construct 3VP systems from the top 10 programs

Number of 3VS that can be constructed: 120
Number of 3VS that was constructed: 120
Number of 3VS with lower failure rate than the lowest of the individual programs in the system: 41 (34.17%)
Best improvement:
minimum failures of individual program = 559
failures of 3VS =444
percent improvement = 20.57%

Construct SVP systems from the top 10 programs

Number of 5VS that can be constructed: 252
Number of 5VS that was constructed: 252
Number of 5VS with lower failure rate than the lowest of the individual programs in the system: 0 (0.00%)
Best improvement:
minimum failures of individual program = 559
failures of 3VS = 620
percent improvement = -10.91%

Construct 7VP systems from the top 10 programs

Number of 7VS that can be constructed: 120
Number of 7VS that was constructed: 120
Number of 7VS with lower failure rate than the lowest of the individual programs in the system: 0 (0.00%)
Best improvement:
minimum failures of individual program = 559
failures of 3VS =711

32

percent improvement = -27.19%

Combined top list of individual program or 3VS among the top programs

Rank Type Prgl Prg2 Prg3 Failures Improvement

1 Ind 747 392 NA

2 3VS 744 758 827 444 11.02%
3 3VS 758 827 803 444 20.57%
4 3VS 758 827 710 444 20.57%
5 3VS 801 758 827 449 19.68%
6 3VS 758 827 743 455 18.60%
7 3VS 744 801 758 463 7.21%
8 3VS 758 827 716 464 16.99%
9 3VS 758 827 764 465 16.82%
10 3VS 801 758 803 467 16.46%
11 3VS 801 758 764 469 16.10%
12 3VS 744 801 827 470 5.81%
13 3VS 801 827 803 474 15.21%
14 3VS 744 758 743 484 3.01%
15 3VS 758 803 743 485 13.24%
16 3VS 758 764 743 490 12.34%
17 3VS 801 827 764 493 11.81%
18 Ind 744 499 NA

19 3VS 827 803 743 504 10.00%
20 3VS 801 758 776 515 7.87%
21 3VS 827 764 743 520 7.14%
22 3VS 758 764 770 524 6.26%
23 3VS 758 803 770 525 6.08%
24 3VS 827 803 770 525 6.25%
25 3VS 801 758 770 526 5.90%

Construct 3VP systems from ALL programs

Number of 3VS that can be constructed: 120
Number of 3VS that was constructed: 82160
Number of 3VS with lower failure rate than the lowest of the individual programs in the system: 14818
(18.04%)
Best improvement:
minimum failures of individual program = 1746
failures of 3VS = 1010
percent improvement = 42.15%
Total time needed for analysis 83.7 (minutes)

33

Appendix III. Detailed results from the analysis of
400 variants

The original experiment was extended by developing an additional of 320 variants, 20 for
each of the 16 settings of parameters. The result from the analysis carried out in MATLAB is
shown below.

Tests and analyses for technical report 98-13 on the GPBRExperiments using 400 versions

Average number of failures: 1308.96 (Psucc=86.91%)
Standard deviation: 680.65

Best program, number of failures: 392 (Psucc=96.08%)
Worst program, number of failures: 3701 (Psucc=62.99%)
Top 10, Average number of failures: 463.40 (Psucc=95.37%)
Top 10, Standard deviation: 35.60

Graph showing probability that n versions out of 400 versions
fail on a randomly chosen test case among the 10000 test cases was written to file

fig_probfailure.eps

Number of testcases that fail on 400 versions:
Number of testcases that fail on 399 versions:
Number of testcases that fail on 398 versions:
Number of testcases that fail on 397 versions:
Number of testcases that fail on 396 versions:
Number of testcases that fail on 395 versions:
Number of testcases that fail on 394 versions:
Number of testcases that fail on 393 versions:
Number of testcases that fail on 392 versions:
Number of testcases that fail on 391 versions:
Number of testcases that fail on 390 versions:

O == O = O OO O OoOo

Contourplot of testcase difficulty variability written to file
fig_testcase_difficulty.eps

Structural diversity

Average size: 108.01

Standard deviation: 97.06

Max size: 725

Min size: 5

Correlation between size and failure rate: 0.04
Top 10 programs

Average size: 107.20

Standard deviation: 49.44

Max size: 226

Min size: 59

Failure diversity

34

1, Between programs

All programs:

Minimum correlation: -0.4438

Number of correlations: 79800

Negative correlations: 4518.00 (5.66%)

Small correlations (<0.2): 13708.00 (17.18%) Note that the negative correlations are included in the small
correlations.

Maximum failure diversity: 0.9995

Top programs:
Minimum correlation: 0.5371
Maximum failure diversity: 0.6150

2, Between methods

Number of intermethod correlations: 120

Number of negative correlations: 0

Number of small correlations (<0.2): 1 Note that the negative correlations are included in the small

correlations.

The 20 smallest inter-method correlations:

Method 1 Method 2 Correlation
9 14 0.0785
9 12 0.2050
1 9 0.3000
7 9 0.3182
4 14 0.3184
9 11 0.3258
3 9 0.4309
8 9 0.4354
4 12 0.4510
5 14 0.4938
14 16 0.4956
14 15 0.4969
9 10 0.5011
9 13 0.5013
12 16 0.5685
1 4 0.5713
4 7 0.5770
5 12 0.5911
13 14 0.6076
2 9 0.6083

3, Inter- vs. Intra
All programs:

The number of possible binomial tests: 3600000
Number of tests performed: 10000

Correlation measure gave 6318 positive outcome.
Null hypothesis can be rejected at the 0.0100 level (p=0000)

35

Diversity measure gave 6312 positive outcome.
Null hypothesis can be rejected at the 0.0100 level (p=0000)

For methods that are better than average:

Methods worse than average that are NOT included: 4 6 9 10 12 14 15 16
Methods better than average: 1 2 3 5 7 8 11 13

Number of methods used in the tests below: 8

The number of possible binomial tests: 840000

Number of tests performed: 10000

Correlation measure gave 5897 positive outcome.

Null hypothesis can be rejected at the 0.0100 level (p=0000)
Diversity measure gave 5949 positive outcome.

Null hypothesis can be rejected at the 0.0100 level (p=0000)

For methods that are better than second average (average of the ones that were better than average above):

Methods worse than second average that are NOT included:2 3 4 5 6 8 9 10 12 14 15 16
Methods better than second average: 1 7 11 13

Number of methods used in the tests below: 4

The number of possible binomial tests: 180000

Number of tests performed: 10000

Correlation measure gave 6313 positive outcome.

Null hypothesis can be rejected at the 0.0100 level (p=0000)
Diversity measure gave 6506 positive outcome.

Null hypothesis can be rejected at the 0.0100 level (p=0000)

Construct 3VP systems from the top 10 programs

Number of 3VS that can be constructed: 120
Number of 3VS that was constructed: 120
Number of 3VS with lower failure rate than the lowest of the individual programs in the system: 32 (26.67%)
Best improvement:
minimum failures of individual program = 488
failures of 3VS = 405
percent improvement = 17.01%

Construct SVP systems from the top 10 programs

Number of 5VS that can be constructed: 252
Number of 5VS that was constructed: 252
Number of 5VS with lower failure rate than the lowest of the individual programs in the system: 0 (0.00%)
Best improvement:
minimum failures of individual program = 462
failures of 3VS =479
percent improvement = -3.68%

Construct 7VP systems from the top 10 programs

Number of 7VS that can be constructed: 120
Number of 7VS that was constructed: 120
Number of 7VS with lower failure rate than the lowest of the individual programs in the system: 0 (0.00%)
Best improvement:
minimum failures of individual program = 462
failures of 3VS =516
percent improvement = -11.69%

36

Combined top list of individual program or 3VS among the top programs

Rank Type Prgl Prg2 Prg3 Failures Improvement
1 Ind 747 392 NA
2 3VS 1140 1070 1042 394 5.97%
3 3VS 1140 1017 1042 395 5.73%
4 3VS 1140 1029 1042 396 5.49%
5 3VS 1140 1042 744 397 5.25%
6 3VS 1140 1042 1189 397 5.25%
7 3VS 1017 1042 1134 403 13.33%
8 3VS 1070 1042 1134 404 12.93%
9 3VS 1029 1042 1134 405 12.34%
10 3VS 1042 1134 744 405 17.01%
11 3VS 1042 1134 1189 405 17.01%
12 Ind 1140 419 NA
13 3VS 880 1029 1042 422 6.43%
14 3VS 880 1070 1042 423 6.21%
15 3VS 880 1017 1042 424 5.99%
16 3VS 880 1042 744 425 5.76%
17 3VS 880 1042 1189 425 5.76%
18 3VS 880 1042 1134 427 5.32%
19 3VS 1070 1017 1134 443 4.53%
20 3VS 880 1070 1017 445 1.33%
21 3VS 1070 1017 1042 446 3.88%
22 3VS 1029 1070 1134 451 2.38%
23 3VS 1029 1017 1134 451 2.38%
24 Ind 880 451 NA
25 3VS 1029 1070 1042 452 2.16%

Construct 3VP systems from the 100 best programs

Number of 3VS that can be constructed: 161700
Number of 3VS that was constructed: 161700
Number of 3VS with lower failure rate than the lowest of the individual programs in the system: 51799
(32.03%)
Best improvement:
minimum failures of individual program = 639
failures of 3VS =415
percent improvement = 35.05%

Total time needed for analysis 238.5 (minutes)

37

