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Abstract 

Software fault tolerance schemes often employ multiple 
software versions developed to meet the same specifica- 
tion. If the versions fail independently of each other, they 
can be combined to give high levels of reliability. While 
design diversity is a means to develop these versions, it 
has been questioned because it increases development 
costs and because reliability gains are limited by 
common-mode failures. We propose the use of genetic 
programming to generate multiple so f ia re  versions and 
postulate that these versions can be forced to differ by 
varying parameters to the genetic programming algo- 
rithm. This might prove a cost-effective approach to 
obtain forced diversity and make possible controlled 
experiments with large numbers of diverse development 
methodologies. This paper qualitatively compares the 
proposed approach to design diversity and its sources of 
diversity. A n  experiment environment to evaluate whether 
signijicant diversity can be generated is outlined. 

1. Introduction 

Design diversity, i.e. several diverse development 
efforts, has been proposed as a technique for generating 
redundant versions of the same software. These versions 
are to be employed in structures such as n-version 
programming, with n versions independently calculating an 
answer and a voter choosing between them, to give the 
resulting system the ability to tolerate software faults. The 
difference, i.e. diversity, in the programs that is generated 
by the different design methods used for the different 
versions is called software diversity. The hope is that the 
diversity in the programs will make them exhibit different 
failure behavior; they should not fail for the same input 
and, if they do, they should not fail in the same manner. 

There are two main drawbacks with the approach of 
design diversity: (1) it is not clear how we can guarantee 
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that the developed programs fail independently of each 
other and (2) the life cycle cost of the software will likely 
increase. The original idea of n-version programming 
(NVP) put forward in [ 11 opted for the specification of the 
software to be given to different development teams. The 
teams should independently develop a solution, and this 
independence between the teams should manifest itself in 
independent failure behavior. However, software 
development personnel have similar education and training 
and use similar thinking, methods and tools. This will lead 
to common-mode failures, several versions failing for the 
same input, and limit the diversity that can be achieved. 
Experimental research ([2]) has shown that there are 
systems for which the independence assumption is not 
valid. The strength of using design diversity has thus been 
questioned. 

In [3],  the term random diversity was proposed to 
denote the above scenario; generation of diversity is left to 
chance and arises from differences in background and 
capabilities of the personnel in the development teams. In 
contrast to this, they introduced the notion of enforced 
diversity. By listing the known possible sources of 
diversity and varying them between the different develop- 
ment teams, the software versions can be forced to differ. 
In [4], Littlewood and Miller showed that the probability 
that two versions developed with different methodologies 
would fail on the same input is determined by the 
correlation between the methodologies. The correlation is 
a theoretical measure of diversity defined over all possible 
programs and all possible inputs. Littlewood and Millers 
calculations set the goal for studies into achieving software 
diversity: find methodologies with small or negative 
correlation. 

A problem in using design diversity is that life cycle 
costs can increase. Obviously, the development cost will 
increase; we have to develop N versions instead of one. In 
addition to this, maintenance costs increase. Each change 
or extension to the specifications of the software must be 
implemented, and possibly even redesigned, in each of the 

387 



diverse versions. The actual cost increases have been 
estimated to be near N-fold [5]. 

This paper introduces a novel approach for developing 
multiple diverse software versions to the same specifica- 
tion that addresses both the cost and non-independence 
problems of design diversity. By varying a number of 
parameters affecting the development of programs, we can 
force them to differ. The proposed approach uses genetic 
programming (GP) which, according to [6], is a technique 
for searching spaces of computer programs for individual 
programs that are highly “fit” in solving (or approximately 
solving) a problem. GP evolves programs built from 
specified atomic parts and adhering to a basic specified 
structure. Genetic algorithms model evolutionary 
processes in nature and are studied under the subject of 
Evolutionary Computation (see for example [7]). 

Section 2 introduces genetic programming and section 
3 discusses how it can be used to develop diverse software 
versions. An experiment environment to evaluate how 
successful this approach is in generating significant 
diversity is described in section 4. No experiment results 
are presented. Finally, we give a summary and indicate 
future directions for this research. 

2. Genetic Programming 

Genetic algorithms mimic the evolutionary process in 
nature to find solutions to problems. Genetic programming 
is a special form of genetic algorithm in which the solution 
is expressed as a computer program. It is essentially a 
search algorithm that has shown to be general and effective 
for a large number of problems. 

In the classical view of natural evolution, a population 
of individuals competes for resources. The most “fit” 
individuals survive, i.e. they have a higher probability of 
having offspring in the next generation. This process is 
modeled in genetic algorithms in which the individuals are 
objects expressing a certain, often partial or imperfect, 
solution to the investigated problem. In each generation, 
each individual is evaluated as to how good a solution it 
constitutes. Individuals that are good are chosen for the 
next generation with a higher probability than low-fit 
individuals. By combining parts of the chosen individuals 
into new individuals, the algorithm constructs the 
population of the next generation. Mutation also plays an 
important part. At random, some parts of an individual are 
randomly altered. This is a source of new variations in the 
population. 

While a genetic algorithm generally works on data or 
data structures tailored to the problem at hand, genetic 
programming works with individuals that are computer 
programs. This technique was introduced by Koza in [6] 
and has recently spurred a large body of research ([SI). 
Kozas programs are trees that are interpreted in software 

but a number of other approaches exist. For example, in 
[9] Nordin evolved machine language programs that 
control a miniature robot. 

A number of GP systems are available. To use one of 
them to solve a particular problem, we must tailor it to the 
problem. This involves choosing the basic building blocks 
(called terminals), such as variables and constants, and 
functions that are to be components of the programs 
evolved, expressing what are good and bad characteristics 
of the programs, choosing values for the control parame- 
ters of the system and a condition for when to terminate 
the evolution of programs [6]. The control parameters 
prescribe, for example, how many individuals are to be in 
the population, the probability that a program should be 
mutated and how the initial population of programs should 
be created. 

The major part of tailoring a GP system to a specific 
problem is to determine a fitness function that evaluates 
good and bad characteristics of the programs and to 
develop an environment in which these characteristics can 
be evaluated. There is no reason to use GP if it is harder to 
implement an evaluation environment than it is to 
implement a program solution. However, GP can be used 
for problems that we can state but for which no solution is 
known. The fitness function is often implemented via test 
cases with known good answers. However, the fitness 
evaluation process is much more general and constitutes 
any activity taken to evaluate the performance of a 
program. For example, in [9], the programs are evaluated 
in a real robot; the ability of the program to avoid 
obstacles while keeping moving is evaluated and used as a 
fitness rank. 

2.1. Diversity in genetic programming 

The term diversity is used with a special meaning in the 
Evolutionary Computation (EC) community. If the 
population contains programs that are different, it is said to 
be diverse. When there is no diversity left in the popula- 
tion, i.e. all programs look and behave the same, the GP 
run is said to have converged to a solution. This can 
happen before good solutions to the problem have been 
found and thus different ways to maintain and enhance the 
diversity are studied (see for example [lo]). 

Several different measures of diversity have been 
proposed in the EC community and are classified in [ 111 
into two different classes: genotypic and phenotypic 
measures. These classes directly correspond to two of the 
four characteristics of software diversity listed in [3]. 
Genotypic diversity is called structural diversity by Lyu et 
al. and measures structural differences between the 
programs. Phenotypic diversity is called failure diversity 
by Lyu et al. and measures differences in the (failure) 
behavior of the programs. 
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The diversity remaining in the population when the GP 
run is terminated can be used to enhance the effectiveness 
of GP. In [12], Zhang and Joung proposed that a pool of 
programs, instead of a single one, should be retained from 
a GP run. The output for certain input is established by 
applying all the programs in the pool to the input and 
taking a vote between them to decide the master output, 
much like an NVP system. 

Our approach is distinct from the approach of Zhang 
and Joung, since we propose that diversity from several 
runs of a GP system should be exploited and that a 
systematic variation of the parameters to the GP algorithm 
should be used to promote diversity. Our goals are also 
markedly different from the research on measuring 
diversity. This is primarily done to assess whether a run of 
a GP system should be stopped because the population has 
converged ([I 11). 

2.2. Parameters to a GP system 

In the remainder of this paper, we take a pragmatic 
view of genetic programming. We consider it as a 
technique for searching a space of programs and view it as 
a "black box" with three sets of parameters: parameters 
defining the program space to be searched (program space 
parameters), parameters defining details about the search 
(search parameters) and parameters to the evaluation 
environment (evaluation parameters). 

The program space parameters include parameters 
defining the terminal and function sets and the structure of 
the programs. These parameters define a space of all 
possible programs adhering to the specified structure and 
applying the specified functions to the specified terminals. 

The search parameters affect only the result, i.e. the 
effectiveness, of the searches in the space of programs 
defined by the program space parameters. Examples of 
search parameters are the number of programs in the 
population and the probability that a program should be 
mutated. 

The evaluation parameters define, for example, the 
number and nature of test cases to be used in evaluation. 
The strategy for evaluation is also viewed as a parameter. 
An example of a strategy would be to let the test cases 
change to test the programs on difficult input values. 

It is worth noting that this black-box view frees us from 
considering only genetic programming. We can consider 
other algorithms searching a user-definable program space 
or other algorithms that generate programs. Possible 
substitutions for GP could be program induction methods 
or other machine learning algorithms studied in the area of 
artificial intelligence. Diversity could be found by varying 
the algorithm used. 

3. Software diversity using genetic 
programming 

The output from a run of a GP system is a population of 
programs that are solutions to the problem stated in the 
fitness function implemented in the evaluation environ- 
ment. The solutions are of differing quality; some 
programs may solve the problem perfectly, others might 
not even be near solving a single instance of the problem 
and in between are programs with differing rates of 
success. The diversity in this population can be exploited, 
as was done in [12]. However, the amount of diversity 
available in the population after a GP run will be limited 
since populations tends to converge to a solution. One way 
to overcome this might be to rerun the system with the 
same parameter settings. GP is a stochastic search process, 
and two runs with the same parameters can produce 
different results. Diversity might also be achieved by 
altering parameter values between different runs of the GP 
system. If we change the search parameters to a GP 
system, the search might end in different areas of the 
search space of programs, thus yielding diverse software 
versions. Furthermore, if we change the program space to 
be searched by altering the program space parameters, we 
will get programs using different functions and terminals 
and adhering to a different structure. Diversity might also 
be achieved by changing parameters to the evaluation 
environment. Thus, we propose that diverse software 
versions are developed by running, re-running and varying 
parameters to a genetic programming system tailored to 
the specification for the version(s). 

Table 1 outlines the phases in using the proposed 
method. We start by developing an environment to 
evaluate the quality of programs. i.e. how well they adhere 
to the requirements stated in the specification. Thus. upon 
entering this phase, we need to have a specification at 
hand. Next, we need to choose which parameters to vary, 
which values to vary them between and which combina- 
tions of parameter values to run with the GP system. 
Research is needed to evaluate which parameters most 
affect the diversity of the resulting programs and how to 
choose their values. The principle for the choice o f  values 
should be to include concepts that are thought to be needed 
to develop a solution, but careful consideration must be 
made so that the diversity that can be found is not limited. 
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an evaluation environment. 

7. Choose programs Choose the combination of programs that give the lowest total failure probability for the 
software fault tolerance structure to be used. 

Table 1. Phases of the proposed method for developing diverse program by varying parameters to 
a genetic programming system 

There are large numbers of parameters to a GP sys- 
tem, and most of them can take multiple values, so the 
number of combinations of parameter values is vast. We 
think that a systematic exploration of these different 
combinations should be tried. Statistical methods for the 
design and analysis of experiments, as for example 
fractional factorials as described in [ 131, will likely be 
needed to this end. 

in the next phase ( 5 ) ,  the chosen combinations of 
parameter values is supplied to the GP system which is 
run to produce the programs. From each run, the best, 
several or all of the developed program versions can be 
kept for later testing. If the program generation is not 
successful, iteration back to phases 2,3 and 4 may be 
necessary. Upon leaving phase 5 ,  we have a pool of 
programs. Running a GP system is an automatic process 
and does not need any human intervention, so the 
number of programs developed can be large. If we are to 
use the programs in a specific software fault tolerance 
scheme, such as an n-version system, we need to choose 
which programs in the pool to use. Calculating measures 
of diversity such as the correlation measures in [4] or the 
failure diversity measure in [3] might be useful in this 
task and can be calculated from the test data in phase 6. 

In [4], systematic approaches to making design 
choices when employing design diversity were intro- 
duced. If we hypothesize that our choices of parameter 
values are analogous to these design choices, the findings 
in [4] might be used to choose among the combinations 
of parameter values. A particular set of design choices is 
called a design methodology in [4] and, if we take our 
analogy even further, our GP approach would enable us 
to try a large number of design methodologies in the 
same setting. However, it is unclear whether the use of 
GP or a common evaluation environment limits the 
diversity to be explored such that the variations in design 
methodologies are only minor. Research is needed to 
evaluate this. 

In the following, we list sources of diversity when an 
approach such as NVP is used and identifies which GP 
parameters relate to these sources. Thereafter, the cost 
issue of using the proposed GP approach is briefly 
discussed. Central to the result of applying the described 
method is that GP can evolve good solutions in the first 
place. it is not probable that the versions can be used if 
they fail on a large number of input cases. This issue is 
further discussed below. 

3.1. Comparison of diversity sources 

To qualitatively assess the value of the proposed 
approach, we would like to compare the sources of 
design diversity with the parameters we can affect in the 
GP system and what effect on the generated program 
they might have. Table 2 shows a taxonomy of sources of 
design diversity and parameters that correspond to these 
sources. The taxonomy is not intended to be complete 
but covers the most important aspects mentioned in the 
literature (see for example [14] and [3]). The taxonomy 
has been carried over from the Software Metrics area 
([15]). Our motivation for this is that what can be 
measured can be varied and what can be varied, and 
applies to software and its development, is a potential 
source of diversity. In [15], Fenton arrives at this 
taxonomy by viewing a piece of software as a set of 
activities (processes) using resources to produce artifacts 
(products). In table 2, a source with leading number 1 is 
a process, with leading number 2 is a product and with 
leading number 3 a resource. 

We stress that making a comparison like this is not 
easy; it is not clear-cut how an approach such as genetic 
programming can be compared with more traditional 
software development techniques. 
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Products. Wc cannot directly specify what algorithms 
and data structures should be used by the GP programs. 
If we were to give two development teams different 
functions and terminals to use in their program, however, 
it might affect what algorithm they used to solve their 
problem. If the same reasoning applies to our GP system, 
we would expect the algorithm used in the developed 
programs to differ for runs with different functions and 
terminals. The same argument applies for the parameter 
that determines the permitted structure of the programs. 
If we dictate that a development team cannot use any 
subroutines or cannot use recursion, that team might not 
implement a certain algorithm, forcing them to consider 
other solutions. In GP, we can introduce functions and 
terminals that give access to certain types of data 
structures, such as indexed memory, lists or stacks. 

Some studies have shown that using different imple- 
mentation language can give rise to diversity ([3]). The 
counterpart in GP is the representation language. 'This 
could be one of the earlier mentioned function trees or 
machine instructions. Other examples are programs 
implemented with directed acyclic graphs, functional 
languages or stack-based microinstructions. 

Resources. The representation languages in GP are often 
only intermediary. After the GP run, this intermediate 
language can be translated into some target language. 

Processes. The potential diversity arising from different This makes it possible to leverage diversity available 
specification processes and/or types also can be used from using different compilation tools, such as compil- 
with the GP approach. The difference is that each ers, linkers and loaders. The personnel and team sources 
specification must be implemented in an evaluation of design diversity have no direct counterpart in GP. 
environment. The design and implementation processes There are many parameters to be set when using GP that 
have no direct counterpart in GP. With GP, we do not have no direct counterparts in ordinary development 
explicitly design the programs; they evolve to meet our methodologies. These should not be viewed as purely 
specification. However, the task of choosing parameters, new ways of adding diversity sources since it is probable 
their values and combinations to be used in the different that a variation in many of them will have to be restricted 
runs resembles a high-level design activity. We decide considerably for the GP process to find a satisfactory 
not exactly how the program is to be designed but which solution. 
major concepts can be used. 

The potential diversity from using different imple- Summary. There are a large number of parameters in a 
mentation processes resembles using different types of GP system, and they correspond to some of the sources 
GP system with, for example, different program of diversity in traditional design diversity approaches. 
representations. An example would be using function Research is needed to evaluate which of the parameters, 
trees to represent the programs in one run and using if any, can be used to force the development of diverse 
linear representations in another. software versions. 

The diversity to be found by different testing schemes We believe that a change in the program space 
has no direct counterpart in GP. However, choosing the parameters has the greatest potential for generating 
number and values for the test cases to use in evaluating diversity since it alters the space of programs that are 
the programs relates to testing as well as to test data searched. Furthermore, changing these parameters is not 
(point 2.5). For different runs, we might choose to difficult and does not incur a large cost and thus should 
concentrate the test cases in a special region of the input be the focus of a pilot experiment. Changing the 
data space. Another parameter that resembles alternating parameters of the evaluation environment also shows 
the test process would be to allow the test cases to potential for diversity. However, the cost of doing so is 
change dynamically. greater and may involve developing altemative 

structure functions and 

Table 2. Correspondence between sources 
of diversity in traditional design diversity 
approaches (based on [15], [14] and [3]) 
and our proposed GP approach 
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evaluation environments. Finally, changing the search 
specific parameters should primarily change the rate of 
success for the GP system. Thus these parameters must 
be altered to find suitable solutions and may not be 
available to use for diversity purposes. 

3.2. Cost of using genetic programming 

Developing one program version in GP is an auto- 
matic process. It needs a great deal of processing power 
but can be speeded up by using parallel computer 
systems. The evaluation of individuals in a GP popula- 
tion can be done in parallel, and the different runs can be 
made in parallel when we develop multiple versions. 
Compared to a traditional approach to design diversity, 
such as NVP, the cost of development will likely be low; 
NVP uses human software developers while GP uses 
processors. This would imply that using GP would 
decrease the cost of developing an n-version system. The 
initial cost for the GP approach is higher, however; we 
may need to try parameter combinations we have not pre- 
specified, and it is unclear how the verification and 
maintenance costs compare with a traditional approach. 

When using GP, we design and implement an evalua- 
tion environment from the specification, choose which 
GP parameters to vary and which values to vary between. 
With the NVP process, this preparation phase includes 
administrative tasks such as choosing the design teams, 
distributing information to them and managing their 
work. An additional cost in the GP approach is convert- 
ing the developed versions to a format suitable for 
execution. The internal representation in the GP system 
must be converted to binaries for the target machine. 
However, this cost can be expected to be low since it can 
be automated. 

The cost issue is further complicated if we take 
verification and maintenance into account. It is unclear 
how the verification costs of the two approaches 
compare. The programs developed with GP are generally 
difficult for humans to read. Their building blocks are 
the same as in ordinary programs, but there are no 
comments or design documents and the code can be very 
complex. In the general case, one cannot expect to debug 
the programs in the ordinary sense. The program(s) 
possibly need to be reinserted into the GP system and 
further developed. Another approach might be to re-run 
development but emphasizing requirements on the 
program differently (in the evaluation environment). 
Similar approaches may be used when maintenance is 
performed on the n-version system owing to, for 
example, changing requirements. In this case, the 
evaluation environment would probably also have to be 
updated. 

3.3. Applicability of genetic programming 

We stress that there are serious deficiencies in the 
theoretical knowledge about genetic programming. The 
research field is only a couple of years old, and the 
technique has been applied mostly to toy problems. 
There is a feeling in the evolutionary computation 
community that it is time to “step up” and attack real 
problems, but there is a risk that GP will not scale up to 
more complex tasks. The applicability of our proposed 
approach is directly tied to the applicability of GP. If GP 
can not be scaled up to larger problems, neither can our 
proposed approach. 

At its current level o f  maturity, GP is probably best 
suited for controllers, which are small and isolated 
program components, even though this somewhat 
contradicts the reason for using software diversity in the 
first place. The success criteria for control algorithms can 
be more easily described than, for example, desktop 
applications since their effects are apparent in the 
physical world (or in a simulation). Furthermore, GP can 
be applied even if the underlying control algorithms are 
poorly understood or not even theoretically known. If we 
can implement our requirements in an evaluation 
environment, GP can be applied. 

When using the proposed approach, it is crucial that 
the evaluation environment is free from errors. Since the 
environment is used to evaluate all programs developed, 
it is a single point of failure in our development process. 
This is analogous to the role of the specification in NVP. 

4. Pilot experiment environment 

We have developed an experiment environment and 
designed a pilot experiment to investigate whether GP 
can be used to force the development of diverse software 
versions. A sketch of the environment is shown in figure 
1 below. A pool of programs is developed by a GP 
system, and each program is tested on the same test set. 
The failure behavior of the programs can be compared to 
assess whether any significant diversity has been 
achieved. 

The application problem is to develop a control 
program for an airplane arrestment system. These 
systems are used at airfields to bring an airplane to a safe 
stop in the case of runway overrun. A cable is attached to 
the incoming airplane and large hydraulic discs are 
activated to brake the plane. A computer employing a 
control program sets the break pressure. This application 
was chosen mainly for simplicity; it is well known at our 
department, and a simulator is available. 

392 



I- - - - - - - - - - - 
P o o l  o f  p r o g r a m s  

I 

I I  I 
P r o g r a m  ~ i t n e s s  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

E v a l u a t i o n  
e n v i r o n m e n t  

S i m u l a t o r  ... 

D e v e l o p m  e n t  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I- - - - - - - - - - - 
I F a i l u r e  I 
I I 

I 
I e v a l u a t i o n  I 

:a-- 
I d a  I 

S i m u l a t o r  I : *  

w i t h  o u t c o m e  f o r  e a c h  

P a r a m  e t e r s  

Figure 1. Experiment environment for developing and evaluating airplane arrestment controlllers. 

The GP development system is built on the GPSys 
system developed in Java by Adil Qureshi at the 
University College in London. Simulations are done to 
evaluate the fitness of the programs arrestments of 
airplanes with different mass and velocity. The perform- 
ance of the programs is evaluated according to several 
criteria extracted from the specification; examples are 
that the plane does not exceed strength limits or retard 
the pilot too heavily. Real-valued penalty scores are 
assigned for each criterion, and these penalties are 
aggregated to a fitness score. The failure evaluation that 
takes place after development uses the same simulator to 
evaluate the programs but, instead of giving real-valued 
penalty scores, the outcome is simply deemed a failure or 
a success. 

The custom developed parts of the experiment envi- 
ronment are made up of 1125 lines of Java code. They 
have been tested, and we are now in a position to start 
the experiments. What remains to be implemented is a 
measure of diversity between programs and methodolo- 
gies that can be calculated from the failure evaluation 
data. We will probably calculate correlations pairwise 
between methodologies, as described in [4], and/or use 

the failure diversity measure described by [3]. However, 
to obtain statistically significant results, we need an 
analysis of how many programs to develop with each 
methodology and how many test cases to have in the test 
set. We are currently working on these issues together 
with statisticians at our university. 

5. Summary and future directions 

We have introduced the idea of using genetic pro- 
gramming as a means to force the development of 
diverse software versions. Genetic programming is a 
stochastic search technique for searching in spaces of 
programs. It has a large number of parameters that 
determine the basic structure, operators and building 
blocks used in the program versions developed and 
governs how the programs develop in these basic forms. 
In addition parameters are available in the environment 
that is used to evaluate to what extent a program version 
fulfills criteria stated by the program specification. 
Choosing values for these parameters parallels, in the 
terminology of [4], making design choices and results in 
different development methodologies. The promise of 
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the proposed approach is that the design choices can be 
made in a controlled manner, using for example factorial 
designs, which will allow a search for diverse programs. 
In addition, the cost of developing multiple versions 
shows a potential to decrease since multiple versions can 
be developed once a GP system has been set up. The 
effect on the life cycle costs of a multi-version system is 
not known. 

Having large numbers of software versions that 
adhere to the same specification may prove an important 
step in understanding software diversity and its 
limitations. The technique can be used on a set of 
problems not commonly considered by the safety critical 
computing community: those for which we can state the 
characteristics of success and failure but for which we 
know no solution. Furthermore, the approach described 
in this paper is not limited to genetic programming. It 
can be used with other techniques for program generation 
or induction to obtain more sources of diversity. 

It is unclear whether the design choices we can affect 
using genetic programming result in any significant 
failure diversity in the generated programs. The theory 
and application of genetic programming is in its infancy 
and, while much research is ongoing, sufficiently low 
failure rates might never be obtained. To evaluate 
whether GP can be used to generate significant diversity, 
we have developed an experiment environment to 
conduct a pilot experiment. More research on how to 
compare two programs or methodologies and assess their 
diversity under statistical rigor will strengthen this 
research; these issues are currently being worked on. If 
these activities are successful, we will go on to conduct 
larger experiments. 

Investigating how new computational models, such as 
evolutionary computation, affect and can be used in the 
field of software reliability and fault tolerance is 
interesting and generates many ideas. We believe that a 
well of inspiration for building reliable computing 
systems can be found by studying nature and biological 
organisms as suggested in [ 161. 
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