
Generating diverse software versions with genetic
programming: an experimental study

R. Feldt

Inde-x-ing terms: Det ign (liwrsity, Fuult tolerunce. Genetic programming

Abstract: Software fault-tolerance schemes often
employ multiple software versions developed to
meet the same specification. If the versions fail
independently of each other, they can be
combined to give high levels of reliability.
Although design diversity is a means to develop
these versions, it has been questioned because it
increases development costs and because
reliability gains are limited by common-mode
failures. The use of genetic programming is
proposed to generate multiple software versions
by varying parameters of the genetic
programming algorithm. An environment is
developed to generate programs for a controller
in an aircraft arrestment system. Eighty programs
have been developed and tested on 10 000 test
cases. The experimental data show that failure
diversity is achieved, but for the top performing
programs its levels are limited.

1 Introduction

One approach to software Fault tolerance employs mul-
tiple versions of the same software to mask the effect of
faults when a minority of versions fails [l]. Design
diversity, i.e. several diverse development efforts, has
been proposed as a technique for generating these
redundant versions. The difference in the programs,
which is generated by the different design methods, is
called software diversity. The hope is that the diversity
in the programs will make them exhibit different failure
behaviour: they should not fail for the same input and,
if they do, they should not fail in the same manner.

There are two main drawbacks with the design-diver-
sity approach: it is not obvious if and how we can
guarantee that the programs fail independently, and the
life-cycle cost of the software will probably increase.
The original idea of N-version programming (NVP)
opted for the software specification to be given to dif-
ferent development teams [11. The teams should inde-
pendently develop a solution, and this independence
between the teams should manifest itself in independent
Failure behaviour. However, software-development per-
sonnel have similar education and training and use sim-
ilar thinking, methods and tools. This can lead to
0 IEE. 1998
IEE Proceedings online no. 19982444
Paper received 21 st July 1998
The author IS with the Department of Computer Engineering, Chalmers
University of Technology, Horsalsv. 11, S-412 96, Sweden

common-mode failures, i.e. several versions failing for
the same input, and limit the diversity thst can be
achieved. Experimental research has shown 1 hat there
are systems for which the independence assumption is
not valid [2]. The strength of using design diversity has
thus been questioned.

In [3], the term random diversity was proposed to
denote the above scenario: generation of diversity is left
to chance and arises from differences in ihe back-
ground and capabilities of the personnel in the develop-
ment teams. In contrast to this, they introduced the
notion of enforced diversity. By listing the krown pos-
sible sources of diversity and varying them between the
different development teams, the software versions can
be forced to differ. In [4], Littlewood and Miller
showed that the probability that two versions devel-
oped with different methodologies would fail on the
same input is determined by the correlatiorl between
the methodologies. The correlation is a theoretical
measure of diversity defined over all possible programs
and all possible inputs. The Littlewood and Miller cal-
culations set the goal for studies into achieving soft-
ware diversity: find methodologies with a small or
negative correlation.
.4 problem in using design diversity is that life-cycle

costs can increase. Obviously, the development cost will
increase: we have to develop N versions instead of one.
In addition to this, maintenance costs increise. Each
change or extension to the specifications of the soft-
ware must be implemented, and possibly even rede-
signed, in each of the diverse versions. The astual cost
increases have been estimated to be near N-fold [5] .

This paper introduces a novel approach for develop-
ing multiple diverse software versions to the s,ime spec-
ification, which addresses both the development cost
and non-independence problems of design diversity.
The proposed approach uses genetic programming
(GP), which, according to [6], is a technique for search-
ing spaces of computer programs for indiviiual pro-
grams that are highly ‘fit’ for solving (or appr 3ximately
solving) a problem. GP evolves programs from speci-
fied atomic parts that adhere to a basic specified struc-
ture. Genetic algorithms model evolutionary processes
in nature and are studied under the subject of evolu-
tionary computation (see, for example, [7]). By varying
a number of parameters affecting the development of
programs, we can force them to differ.

2 Genetic programming

Genetic algorithms mimic the evolutionary process in
nature to find solutions to problems. Genetic program-
ming is a special form of genetic algorithm in which the
solution is expressed as a computer progr,im. It is

IEE Proc -Sofii~ , Vol 145, No 6 Crteniber 19YX 228

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore. Restrictions apply.

essentially a search algorithm that has been shown to
be general and effective for a large number of prob-
lems.

In the classical view of natural evolution, individuals
in a population compete for resources. The most ‘fit’
individuals survive, i.e. they have a higher probability
of having offspring in the next generation. This process
is modelled in genetic algorithms, in which the individ-
uals are objects expressing a certain, often partial or
imperfect, solution to the investigated problem. In each
generation, each individual is evaluated as to how good
a solution it constitutes. Individuals that are good are
chosen for the next generation with a higher probabil-
ity than low-fit individuals. By combining parts of the
chosen individuals to form new individuals, the algo-
rithm constructs the population of the next generation.
Mutation also plays an important part. At random,
some parts of an individual are randomly altered. This
is a source of new variations in the population.

Whereas a genetic algorithm generally works on data
or data structures tailored to the problem at hand,
genetic programming works with individuals that are
computer programs. This technique was introduced by
Koza in [6] and has recently spurred a large body of
research [SI. Koza programs are trees that are inter-
preted in software, but a number of other approaches
exist. For example, in [9], Nordin evolved machine lan-
guage programs that control a miniature robot.

A number of GP systems are available. To use one of
them to solve a particular problem, we must tailor it to
the problem. This involves choosing the basic building
blocks (called terminals), such as variables and con-
stants, and functions that are to be components of the
programs evolved, expressing what are good and bad
characteristics of the programs, choosing values for the
control parameters of the system and a condition for
when to terminate the evolution of programs [6]. The
control parameters prescribe, for example, how many
individuals are to be in the population, the probability
that a program should be mutated and how the initial
population of programs should be created.

The major part of tailoring a GP system to a specific
problem is to determine a fitness function that evalu-
ates good and bad characteristics of the programs and
to develop an environment in which these characteris-
tics can be evaluated. There is no reason to use GP if it
is harder to implement an evaluation environment than
it is to implement a program solution. However, GP
can be used for problems that we can state but for
which no solution is known. The fitness function is
often implemented via test cases with known good
answers. However, the fitness evaluation process is
much more general and constitutes any activity carried
out to evaluate the performance of a program. For
example, in [9], the programs are evaluated in a real
robot: the ability of the program to avoid obstacles
while keeping the robot moving is evaluated and used
as a fitness rank.

2. I Diversity in genetic programming
The term diversity is used with a special meaning in the
evolutionary computation (EC) community. If the pop-
ulation contains programs that are different, it is said
to be diverse. When there is no diversity left in the pop-
ulation, i.e. all programs look and behave the same, the
GP run is said to have converged to a solution. This
can happen before good solutions to the problem have

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

been found, and thus different ways to maintain and
enhance the diversity are studied (see for example [IO]).
Measuring the diversity in the population is fundamen-
tal to this aim.

Several different measures of diversity have been pro-
posed in the EC community and are classified into two
different classes: genotypic and phenotypic measures
[1 11. These classes directly correspond to two of the
four characteristics of software diversity listed in [3].
Genotypic diversity is called structural diversity by Lyu
et al. and measures structural differences between the
programs. Phenotypic diversity is called failure diver-
sity by Lyu et al. and measures differences in the fail-
ure behaviour of the programs [3].

The phenotypic diversity remaining in the population
when the GP run is terminated can be used to enhance
the effectiveness of GP. In [12], Zhang and Joung pro-
posed that a pool of programs, instead of a single one,
should be retained from a GP run. The output for a
certain input is established by applying the programs in
the pool to the input and taking a vote between them
to decide the master output, similar to an N-version
system. Our approach is distinct from the approach of
Zhang and Joung, as we propose that diversity from
several runs of a GP system should be exploited and
that the parameters of the system should be systemati-
cally varied to promote diversity. Our goals are also
markedly different from the research on measuring
diversity in GP populations. The main goal of such
research is to decide whether the run should be stopped
because the population has converged [1 11.

2.2 Parameters of a GP system
In the remainder of this paper, we take a pragmatic
view of genetic programming. We consider it a tech-
nique for searching a space of programs and view it as
a ‘black box’ with three sets of parameters: parameters
defining the program space to be searched (program
space parameters (PSPs)); parameters defining details
about the search (search parameters (SPs)); and param-
eters of the evaluation environment (evaluation param-
eters (EPs)).

The PSPs include parameters defining the terminal
and function sets and the structure of the programs.
These parameters define a space of all possible pro-
grams adhering to the specified structure and applying
the specified functions to the specified terminals.

The SPs affect only the result, i.e. effectiveness, of
the searches in the space of programs defined by the
PSPs. Examples of SPs are the number of programs in
the population and the probability that a program
should be mutated.

The EPs define, for example, the number and nature
of test cases to be used in evaluation. The strategy for
evaluation is also viewed as a parameter. An example
of a strategy would be to let the test cases change dur-
ing evolution to test the programs on difficult input
values.

It is worth noting that this black-box view frees us
from considering only genetic programming. We can
consider other algorithms searching a user-definable
program space or other algorithms that generate pro-
grams. Possible substitutions for GP could be program
induction methods or other machine learning algo-
rithms studied in the area of artificial intelligence.
Diversity could be found by varying the algorithm
used.

229

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore. Restrictions apply.

3 Software diversity with genetic programming

The output from a run of a GP system is a population
of programs that are solutions to the problem stated in
the fitness function implemented in the evaluation envi-
ronment. The solutions are of differing quality: some
programs may solve the problem perfectly, others may
not even be near solving a single instance of the prob-
lem. and in between are programs with differing rates
of success. The diversity in this population can be
exploited [121. However, the amount of diversity availa-
ble in the population after a GP run will be limited, as
populations tend to converge to a solution. One way to
overcome this may be to rerun the system with the
same parameter settings. GP is a stochastic search
process, and two runs with the same parameters can
produce different results.

Diversity may also be achieved by altering parameter
values between different runs of the GP system. If we
change the search parameters of a GP system, the
search may end in different areas of the search space of
programs. Furthermore, if we change the program
space to be searched by altering the PSPs, we will
obtain programs using different functions and termi-
nals and adhering to a different structure. Diversity
may also be achieved by changing the parameters of
the evaluation environment. Thus, we propose that
diverse software versions are developed by running, re-
running and varying parameters of a genetic program-
ming system tailored to the specification for the ver-
sion(s).

Table 1: Phases of proposed procedure for developing
diverse programs by varying parameters of a genetic
programming system

Phase Description

1 Evaluation
environment

2 Parameters to vary

3 Parameter values

4 Parameter
com binations

5 Generate programs

6 Test programs

7 Choose programs

design fitness function f rom software
specification; implement fitness
function in an evaluation environment

choose which parameters of GP
system and evaluation environment
shall be varied

choose parameter values to vary
between

choose combinations of parameter
values to use in different runs

run GP system for each combination of
parameter values

test program versions that have been
generated; calculate measures of
diversity

choose combination of programs that
gives lowest total failure probabil ityfor
software fault-tolerance structure to be
used

3. I Procedure for developing diverse
programs with genetic programming
Table 1 outlines the seven different phases in the proce-
dure we propose. We start by developing an environ-
ment to evaluate the quality of programs (phase l), i.e.
how well they adhere to the requirements stated in the
specification. Thus, upon entering phase 1, we need to
have a specification at hand. Next, we need to choose
which parameters to vary, which values to vary them
between and which combinations of parameter values
to run with the GP system. This is done in phases 2, 3

230

and 4, respectively. Research is needed to evaluate
which parameters most affect the diversity. The princi-
ple for the choice of values should be to include build-
ing blocks, i.e. functions and termi.nals, that are
thought to be needed to develop a solutior. Careful
consideration must be made so that the divemity is not
limited. There are large numbers of parameters of a GP
system, most of which can take multiple valum, and so
the number of combinations of parameter values is
vast. We propose that a systematic exploratioi of these
different combinations should be tried. Statist cal meth-
ods for the design and analysis of experiment:., such as,
for example, fractional factorials described ir, [13], are
needed to this end.

In the next phase (phase 5), the chosen combinations
of parameter values are supplied to the GP sjstem that
is run to produce the programs. From each run, the
best, several or all of the developed program versions
can be kept for later testing. If the program generation
is not successful, iteration back to phases 2 3 and 4
may be necessary. Upon leaving phase 5, we have a
pool of programs.

Running a GP system is an automatic process that
does not need any human intervention, a rd so the
number of programs developed can be large. If we are
to use the programs in a specific software fhult-toler-
ance scheme, such as an N-version system, we need to
choose which programs in the pool to use iphase 7).
Calculating measures of diversity, such as the correla-
tion measures in [4] or the failure diversity measure in
[3], may be useful in this task. The measures can be cal-
culated from the test data in phase 6.

In [4], systematic approaches to makirig design
choices when employing design diversity w :re intro-
duced. If we hypothesise that our choices of parameter
values are analogous to these design choices, the find-
ings in [4] can be used to choose among the combina-
tions of parameter values. A particular set of design
choices is called a design methodology in [4], and, if we
take our analogy even further, our GP approach would
enable us to try a large number of design methodolo-
gies in the same setting. However, it is unclear whether
the use of GP or a common evaluation en-iironment
limits the diversity to be explored, such that the varia-
tions in design methodologies are only n-inor. An
experiment to evaluate this is described in Sec tion 4.

3.2 Cost of using genetic programming
Developing one program version in G P is an mtomatic
process. It needs a great deal of processing power but
can be speeded up by using parallel computers. The
evaluation of individuals in a GP populaticn can be
made in parallel, and different runs can be made in
parallel. Compared with a traditional approach to
design diversity, such as NVP, the cost of development
will probably be low: NVP uses human software devel-
opers, whereas GP uses processors. This implies that
using GP would decrease the cost of developing an N -
version system. The initial cost for the GP approach
may be higher, however, we may need to try parameter
combinations that we have not pre-specified, and it is
unclear how the verification and maintenance costs
compare with a traditional approach.

When using GP, we design and implement an evalua-
tion environment from the specification and choose
which G P parameters to vary and which valu8:s to vary
between. With the NVP process, this preparation phase

IEE Proc.-Softw, Vol. 145, N o . 6, Lkcmibrr 1998

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore. Restrictions apply.

includes administrative tasks such as choosing the
design teams, distributing information to them and
managing their work. An additional cost in the GP
approach is converting the developed versions to a for-
mat suitable for execution. The internal representation
in the GP system must be converted to binaries for the
target machine. However, this cost can be expected to
be low as it can be automated.

The cost issue is further complicated if we take verifi-
cation and maintenance into account. It is unclear how
the verification costs of the two approaches compare.
The programs developed with G P are generally difficult
for humans to read and cannot be debugged in the
ordinary sense. The programs may need to be rein-
serted into the GP system and further developed.
Another approach may be to re-run development but
emphasise requirements of the program differently.
Similar approaches can be used when maintenance is
performed on the N-version system, owing to, for
example, changing requirements.

3.3 Applicability of genetic programming
We stress that there are serious deficiencies in the theo-
retical knowledge about genetic programming. The
research field is only a few years old, and the technique
has been applied mostly to toy problems. There is a
feeling in the evolutionary computation community
that it is time to 'step up' and attack real problems, but
there is a risk that G P will not scale up to more com-
plex tasks. The applicability of our proposed approach
is directly tied to the applicability of GP. If GP cannot
be scaled up to larger problems, neither can our pro-
posed approach.

At its current level of maturity, G P is probably best
suited to small and isolated program components, such
as simple controllers, even though this somewhat con-
tradicts the reason for using software diversity in the
first place. The success criteria for control algorithms
can be more easily described than, for example, desk-
top applications, as their effects are apparent in the
physical world (or in a simulation). Furthermore, G P
can be applied even if the underlying control algo-
rithms are poorly understood, or not even theoretically
known. If we can implement our requirements in an
evaluation environment, G P can be applied.

When the proposed approach is used, it is crucial
that the evaluation environment is free from errors. As
the environment is used to evaluate all programs devel-
oped, it is a single point of failure in our development
process. This is analogous to the role of the specifica-
tion in NVP.

4 Description of experiment

We have used a genetic programming system to
develop 80 program variants from the same specifica-
tion. The programs were developed automatically by a
custom-developed system running on a SUN Enterprise
10000 with the Sun Solaris OS and Java Development
Kit 1.2. The GP system was run five times for 16 dif-
ferent settings of parameters. The resulting 80 pro-
grams were subjected to the same 10 000 test cases, and
their failure behaviour was analysed to assess the diver-
sity of the programs. Fig. 1 shows a diagram of the
experiment environment. Below we describe the target
system, the G P system, the design of the experiment
and the testing procedure. A more thorough descrip-
tion is given in [14].

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

pool of programs

I
I 43

with outcome for each
program and test case

I development I

parameters

Fig. 1
urrestnient controllers

E.xperiineni environment j o r developing und rvuluuting uircrufl

4. I Target system
The target system is designed to arrest aircraft on a
runway. Incoming aircraft attach to a cable, and the
system applies pressure on two drums of tape attached
to the cable. A computer that determines the break
pressure to be applied controls the system. By dynami-
cally adapting the pressure to the energy of the incom-
ing aeroplane, the program should make the aircraft
come to a smooth stop. The requirements on a system
like this can be found in [15]. The system has been used
in other research at our department, and a simulator
simulating aircraft with different mass and velocity is
available. The system is more fully described in [16].

The main function of the system is to brake aircraft
smoothly, without exceeding the limits of the braking
system, the structural integrity of the aircraft or the
pilot in the aircraft. The system should cope with
aircraft with maximum energy of 8.81 x lo7 J and
mass and velocity in the range 4000-25OOOkg and
30-100mss', respectively. More formally, the program
should [Note 11 (with name of corresponding failure
class given in parentheses)

stop aircraft at, or as close as possible to, a target
distance

stop the aircraft before the critical length of the tape
(335m) in the system (overrun)

not impose a force on the cable or tape of more than
360 kN (cable)

not impose a retarding force on the pilot corre-
sponding to more than 2.8g (retardation)

not impose a retarding force exceeding the structural
limit of the aircraft, given for a number of different
masses and velocities in [15] (hookforce)
The programs are allowed to use floating point num-
bers in the calculations. They are invoked for each 10m
of cable and calculate the break pressure, for the fol-
lowing 10 m, given the current amount of rolled out
cable and angular velocity of the tape drum.

An existing simulator of the system has been
imported from C to Java. It implements a simple
mechanical model of the aeroplane and braking system
and calculates the position, retardation, forces and
velocities in the system. It does not model the inertia in
Note 1: Our system adopts the requirements of [l5], with the addition of
the allowed ranges for mass and velocity and a critical length of 335m,
950 feet in [15])

23 1

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore. Restrictions apply.

the hydraulic system or oscillatory movement of the
aircraft due to elasticity in the tape. The simulator has
been set to simulate braking with a time step of
62.5 ms.

4.2 Genetic programming system
Our development system is built on top of the GPSys
genetic programming system, written in Java by Adhil
Quereshi at University College, London. The programs
in this system are function trees that are interpreted
when used in braking the aircraft. During evolution,
GPSys invokes the simulator to evaluate the fitness of
programs. Values from the simulation are used to
assign penalty values to the four fitness criteria. The
penalties are assigned in a non-linear fashion, with high
values when the program fails on the criteria. For the
overrun criterion:

if the stop position of the aircraft is larger than the
critical length of the system, a basic penalty is assigned;
the basic penalty was chosen as 80% of the maximum
penalty for the criterion.

a guiding penalty is assigned if the velocity of the
aircraft is larger than zero on the critical length; this is
to distinguish programs that almost succeeded in brak-
ing the aircraft from programs that have not even tried
and ‘guides’ the programs in the direction of good per-
formance; the basic penalty was chosen as 20% of the
maximum penalty for the criterion.

if the aircraft comes to a halt, a linear penalty is
assigned; it diminishes from its maximum value at posi-
tion 0 up to the target distance and then increases up
to its maximum again at the critical length; this is to

ensure that a halt position close to the target distance
will give the program a low penalty, the maximum
amount of linear penalty is a parameter of the system
but should be much smaller than 80‘%1.

The penalties for the other criteria are assigned in a
similar manner. For more details, consult [14]. The
penalty values on the four criteria are summc:d to give
the total fitness for the test case. The total fitr ess of the
program is the sum of the fitnesses on al l the test cases.
A perfect program would obtain a fitnes,s valu: of zero.

4.3 Testing procedure
After each run of the G P system, the best program is
evaluated on 10000 test cases, evenly spread over the
range of valid masses and velocities. Dividing the range
of allowed mass into 100 locations 212.12kg apart,
generates these test cases. For each mass, a maximum
velocity is calculated, so that the resulting energy does
not exceed the 8.81 x lo7 J specified in [lS]. ‘The range
(30, maximum velocity for this mass) is divided into
100 velocities, and a total of 100 x 100 = 10000 test
cases result.

4.4 Experimental design
The discussion in [17] argued that the progiam space
defining parameters (PSPs) should have the largest
effect on the diversity of the resulting progiams. The
parameters of the evaluation environment (El’s) should
also have an effect, whereas the search parameters
(SPs) may primarily affect the effectiveness of the G P
system. In accordance with this, we have chosen to
vary four PSPs, three EPs and one SP. Many. of these
parameters can take multiple values, giving rise to an

Table 2: Description of parameters varied in experiment and their levels

Factors Levels Type Description Anticipated effect/Motivation

A -1 PSP no effect. for comparison of values during waking

1 the statement If, and operators LE, And and Not can be
used in programs

the functions Sinus and Exp can be used in the programs

B -1 PSP no effect. for oscillatory and/or damping behaviour

1
C -1 PSP the average velocity, average retardation and index to for structural diversity; average velocity

1 the angular velocity, current t ime since start of braking, they can be in programs
current checkpoint can be used in programs

previous angular velocity and time of previous checkpoint
can be used in programs

and retardation are pre-calculated before

-~
D -1 PSP programs cannot use any subroutines For greater program complexity without

1 two subroutines (automatically defined functions) can be
used in program; they are evolved in same manner as rest
of program

need for One long program

~ _ _ _ _
E -1 EP maximum penalty on retardation failure criterion is 1000.0 force programs to find solutions i hat

1 maximum penalty on retardation failure criterion is 2000.0. solve retardation criterion with higher
priority than other criteria

F -1 EP linear penalties are not used without linear penalties, fitness only
expresses ‘amount‘ Of failure;
performance on non-failure aspects
is not measured

G -1 EP 25 test cases uniformly spread over range of possible uniform spreading of test cases ’samples‘
all parts of possible input cases; random
spreading can give both easier ar d more
difficult test cases

-____

1 linear penalties are used, and maximum penalty of 30.0 is
assigned to each failure criterion

-~

values for mass and velocity are used to evaluate fitness
during evolution

25 test cases chosen randomly for each run of the GP
system are used to evaluate fitness during evolution

1

-~
H -1 SP probability of mutation is 0.05 initial experiments indicated that high

1 probability of mutation is 0.6 values might be beneficial
~ ~

232 IEE Proc -Soffit , Vol 145, No 6 D ~ r m h e r IY98

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore. Restrictions apply.

enormous number of combinations. To make a study
feasible, we have confined the parameters to two levels,
represented by -1 and 1. The parameters and their lev-
els are listed in Table 2. All other parameters of the
system were held constant during the experiment. Each
run used 1000 programs in the population and ran for
200 generations.

The result of a GP run is not deterministic, and we
need replicated runs for each setting of the parameters.
The number of unique settings of eight two-valued
parameters is 256, but we used a 2(8-4) fractional facto-
rial of resolution IV to reduce this to 16 [13, 151. The
settings of the parameters are shown in Table 3. Once
the order in which to run the 80 experiments had been
randomised, the experiment was started. The system
ran the 80 runs over the course of five days, without
any human intervention.

Table 3: Fractional factorial design of experiment with
levels for the parameters at each setting

Setting A E = F = G = H =
B*C*D A*C*D A*B*C A*B*D

1 -1 -1 -1 -1 -1 -1 -1 -1

2 1 -1 -1 -1 -1 1 1 1

3 -1 1 -1 -1 1 -1 1 1

4 1 1 -1 -1 1 1 -1 -1

5 -1 -1 1 -1 1 1 1 -1

6 1 -1 1 -1 1 -1 -1 1

7 -1 1 1 -1 -1 1 -1 1

8 1 1 1 -1 -1 -1 1 -1

9 -1 -1 -1 1 1 1 -1 1

10 1 -1 -1 1 1 -1 1 -1

11 -1 1 -1 1 -1 1 1 -1

12 1 1 -1 1 -1 -1 -1 1

13 -1 -1 1 1 -1 -1 1 1
14 1 -1 1 1 -1 1 -1 -1

15 -1 1 1 1 1 -1 -1 -1

16 1 1 1 1 1 1 1 1

Table 4: Number of failures for each of 80 versions, aver-
age and average success probability for each setting of
parameters

Setting A B C D E Average psucc' %

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1083

591

893

2205

588

80 1

499

998

3164

1200

809

1726

81 1

392

1108

2946

708

2100

1275

2694

670

559

697

586

2429

1433

1432

755

996

1177

1053

1111

813

648

888

1644

1657

965

575

1479

3609

1212

1140

1782

852

2240

630

1005

1327

1746

1016

2639

559

753

1054

767

2374

1063

870

2255

754

1026

2388

827

1475

83 1

1150

1240

1159

2968

985

713

2408

2112

1027

1789

1578

942

560

954

1081.2

1183.2

1044.4

2084

926.6

1209.2

762

908.6

2793.2

1404

1055.6

1661.4

998.2

1155.4

11 47.8

1368.6

89.19

88.17

89.56

79.16

90.73

87.91

92.38

90.91

72.07

85.96

89.44

83.39

90.02

88.45

88.52

86.31
~

IEE Proc -Soft. , V d 145, No 6, December 1998

5 Experimental results

For each test case executed, a trace of the braking of
the aeroplane is returned from the simulator. Four val-
ues are extracted from this trace to classify the behav-
iour of the program: halt distance of the aircraft,
maximum force in the cable, maximum retardation
force on the hook, and maximum retardation during
the braking. These values correspond to the four fitness
criteria above. We record a failure for a particular ver-
sion on a particular test case if any value exceeds its
limits. Failure is indicated by one (I) , and success is
indicated by zero (0), and these binary values are col-
lected into a failure behaviour vector giving the failure
behaviour on a particular test case.

The quality of the 80 programs varies highly. Table 4
shows the observed failure rates of the versions. The
average number of failures is 1298.96 (probability of
success P,,,, = 87.01'%), with a standard deviation of
712.89 failures. The best program failed on 392 test
cases (P,,,, = 96.08%), and the worst failed on 3609
(P,,,c = 63.91%). The top ten performing programs are
shown in bold face in Table 4. The average number of
failures among them is 553.90 (P,,,, = 94.46%), with a
standard deviation of 65.93 failures.

number of versions failing
Fig. 2 Probubility qfjuilure of n versions for randomly chosen input

Many programs failed on the same test case. Fig. 2
shows the probability that n of the 80 versions fail on a
randomly chosen test case among the 10000 test cases.
There are no test cases for which all programs fail, but
many test cases seem to be troublesome for the pro-
grams. For example, there are 22 test cases on which 79
of the programs fail, and 24 test cases on which 78 fail.
This indicates that some test cases are more difficult
than others. The variability in difficulty is shown in a
contour plot in Fig. 3 . Darker areas show regions
where more programs fail.

The structural diversity of the programs varies. A
simple measure of this diversity was recorded: the size
of the program trees. The average size is 100.2 nodes in
the tree, with a standard deviation of 82.87. The maxi-
mum size is 459, and the minimum size is 17. No corre-
lation was found between the size of the programs and
the number of failures they exhibited (correlation coef-
ficient 0.05). The average size of the top ten programs
is 84.8, with a standard deviation of 46.07. The maxi-
mum size is 185, and the minimum is 38.

233

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore. Restrictions apply.

I

increasing mass -----+
Fig.3 Test case dijjiccultj

6 Evaluation of results

In the following, we evaluate the failure diversity, test
case difficulty variability and performance of three-ver-
sion systems constructed from the programs. The fail-
ure diversity is evaluated between the individual
programs and between the different methods defined
by our 16 different settings of parameters. A statistical
test is performed to evaluate whether varying the
parameters of the system generates diversity.

6. I Failure diversity
Different measures of diversity have been proposed in
the literature. In [4], Littlewood and Miller propose
that the amount of diversity between two design meth-
ods should be measured using the correlation coeffi-
cient of the joint distribution of their failures. Their
measure is theoretical, as it should be applied for all
input cases and programs that can be developed with
the methods. We have used it in the same way that Lit-
tlewood and Miller use it in their examples: by disre-
garding difficult issues of statistical sampling [4].
Another failure diversity measure was used in [3]. It is
defined as the number of distinct failures divided by
the total number of failures, and below we denote it
LFD.

6. I . 1 Between programs: The diversity measures
were calculated pairwise for all 80 programs. The mini-
mum correlation [Note 21 was -0.2123, and, of the 3160
correlations, 193 (6.11%) were below zero. The maxi-
mum LFD was 0.9894. This is encouraging, as low cor-
relations and high failure diversity indicate that taking

Note 2: Calculated as the correlation between the failure behaviour vec-
tors; this is a special case of the Littlewood and Miller correlation meas-
ure, when there is only one version in each method

234

a vote among versions can mask the effects of failures.
However, if we consider only the top ten programs, the
picture is different. The lowest pairwise correlation
found is 0.5495, and the highest pairwisc, LFD is
0.5965.

6.1.2 Between methods: We have calculated the
120 inter-method correlations, where each set1 ing of the
parameters of the GP system is considered a unique
method. The majority of the correlations are high, but
11 are below 0.20, and two are negative. This was sur-
prising and indicates that the variability of difficulty of
the test cases can be overcome and the program ver-
sions can show better than independent failure behav-
iour. However, the majority of methods involved in the
lowest inter-method correlations are the ones having
the highest average failure rate. Thus, even f we pick
programs for N-version systems from methods showing
low correlation, the failure rate of the system will prob-
ably not equal that of the top performing programs.

6.1.3 Inter-method against intra-method diver-
sity: To evaluate whether diversity can be obtained by
altering the parameters of the GP system, we wanted to
assess whether there is more diversity between versions
in different methods than within the same method. To
this end, we used the following procedure:

randomly choose one method and two distinct pro-
grams (A, and A2) from it

randomly choose a program not in A and :all it B,
compare the diversity between A , and A:! with the

diversity between A, and B,. If the latter is hrger than
the former, the outcome of the test is called positive.
Under the null hypothesis that there is no dil’ference in
diversity between the versions due to the different

IEE P f o c -Soj tw, Vol 145 No. 6 , ikceiiiber 1998

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore. Restrictions apply.

methods used, the number of positive outcomes when
the above procedure is repeated should be binomially
distributed, with n = the number of repetitions of the
test a n d p = 0.5.

For each of the two diversity measures, we per-
formed 2400 test procedures. For the correlation meas-
ure, 1534 positive outcomes were recorded and, for the
failure diversity measure, 1524 positive outcomes were
recorded. The null hypothesis could be rejected at the
0.01 level for both of the diversity measures (both with
p-value < 10-lo), and we favour the hypothesis that the
failure diversity is larger between versions developed
with different settings of the GP parameters than
between versions with the same settings.

The top ten programs do not make up a sufficient
data record on which to perform this hypothesis test-
ing. Instead, the procedure was applied on the 11 meth-
ods with an average failure rate below the total average
[Note 31. In 2400 repetitions of the procedure, 1350
(1310 with the failure diversity measure of Lyu et al.)
positive outcomes were recorded. Thus, the null
hypothesis could still be rejected at the 0.01 level (p =
4.97 x 10-lo a n d p = 3.85 x respectively).

6.2 Test case difficulty variability
Detailed study of the test case difficulty variability
shown in Fig. 3 reveals that there are three main areas
of difficulty. Visually, these areas are located in the
upper left corner, in equidistant clusters in the centre
and in the upper right corner, respectively.

For the upper left corner, where aircraft have high
velocity and low mass, the programs generally fail on
the retardation criteria. It seems plausible to assume
that these failures arise because the programs do not
properly measure and/or use a notion of the mass of
the incoming aircraft in their control algorithm. The
failures in the centre area are mainly due to failure on
the hookforce criteria. The requirements in [15] stated
the maximum allowed hookforce for certain points
with specified mass and velocity. The clusters of failing
programs seen in the centre of Fig. 3 are located below
(lower velocity) and to the left (lower mass) of these
points. These are the areas where the energy of the air-
craft is at a maximum for the requirement of maximum
hookforce. In this light the clusters can almost be
expected to appear. The failures in the upper right cor-
ner are made up of failures on the hookforce and halt-
distance criteria. The former can be explained by the
same reasoning as above and the latter arises because
the energies of the aircraft take on their largest values
this area. If the programs do not exert a high enough
brake pressure at the start of braking they will not
have time to brake the aircraft before the critical
length.

6.3 3-version systems constructed from the
programs
We constructed 3-version systems from our programs.
The majority vote between the failure behaviours of the
programs was taken as the outcome if voting had been
applied during the brakings. We believe that this is a
worst-case scenario, but have not investigated it fur-
ther, If voting is applied in the checkpoints during the
braking failures that occur at different points in time
might be masked. For example, this would happen if
Drogram 1 exceeds the maximum allowed retardation
Note 3: Hence, methods 4, 9, 10, 12 and 16 were excluded

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

early in the braking but after that performs well and
program 2 have the opposite behaviour (good perform-
ance early, failing in the end). With our post-run voting
the behaviour of the system would be deemed a failure
regardless of the fact that actual voting at the check-
points would mask the failures.

We considered all 120 possible N-version systems
consisting of three programs taken from the top ten
programs. In 41(34.17%) of them the failure rate of the
system was lower than the minimum failure rate of the
individual programs. The best improvement found,
compared to the minimum failure rate of the individual
programs in the system, was a decrease from 559 to
444 failures (20.57%).

7 Discussion and conclusions

We have proposed a procedure for developing diverse
software versions and have shown that the versions can
be forced to be diverse by varying parameters to the
genetic programming algorithm used to develop the
programs. The low levels of inter-method diversity
found between some settings of the parameters were
surprising. It indicates that voting in an N-versions sys-
tem could mask individual program failures. However,
the methods giving the lowest correlations are also the
ones with the highest failure rates, and the correlation
cannot be exploited to give failure rates lower than the
top performing programs. The diversity levels found in
the top performing programs were much lower. Fur-
ther analysis will be conducted to find out if the poor
performance can be said to cause the high diversity.

The observed behaviour might be explained by the
special nature of the target system. It shows a high
level of input case difficulty variability, which is known
to limit the amount of exploitable diversity [4]. The dif-
ficulty arises from the fact that higher energies put
more stress on the system. Whether this amount of
input case variability is typical is not known. Further
experiments with other target systems could shed light
on this issue.

In our experiments, we have varied eight parameters
of the GP system. It is possible that different choices of
parameters and their values would give different
results. For example, the apparent problem of the pro-
grams to brake light aircraft with high velocities may
be overcome by letting them use an indexed memory,
making comparisons between values at different check-
points possible.

Further analysis of the experimental data should
focus on revealing the effects of different parameters on
the failure rate and diversity of the generated pro-
grams. The fractional factorial experimental design we
have employed is well suited to this end. The diversity
may also be limited by choices we made for the basic
system design. For example, better results may be
achieved if the programs calculate the break pressure
more frequently during braking. This would probably
require a smaller time step in the simulation and lead
to higher performance demands during program devel-
opment. We will investigate tools for compiling the
experimental environment to native machine code. The
increase in performance will allow larger populations
and longer runs of the GP system, possibly resulting in
better program performance.

Our classification of a failure can be considered
worst-case. When comparing the failure behaviour of

235

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore. Restrictions apply.

programs, we do not compare each failure criterion
individually. Thus, diversity in the way the programs
fail is not accounted for, even though it could be
exploited in a system employing fault masking. Our
failure classification does not take the time aspect of
the program behaviour into account. A situation can
easily be envisioned where two programs both exceed
the maximum allowed hook force but at different
times. This faulty behaviour could be masked by an N-
version system. It would be interesting actually to con-
struct N-version systems from our programs and evalu-
ate their failure behaviour.

Further experimentation with the existing system will
be conducted, as it mainly amounts to initiating runs
and collecting and analysing data; the development of
the programs requires no human activity. Having large
numbers of software versions that adhere to the same
specification may prove an important step in under-
standing software diversity and its limitations. The
approach described in this paper is not limited to
genetic programming. It can be used with other tech-
niques for program generation or induction to obtain
more sources of diversity. It would be interesting to
extend our work and compare different techniques of
this kind.

Investigating how new computational models, such
as evolutionary computation, affect and can be used in
the field of software reliability and fault tolerance is
interesting and generates many ideas. We believe that a
well of inspiration for building reliable computing sys-
tems can be found by studying nature and biological
organisms, as suggested in [18].

8 Acknowledgments

The author wishes to acknowledge the contributions
made by Marcus Rimen, Susanne Bolin, Martin Hiller,
Jorgen Christmansson, Klas Hjelmgren and Jan Torin,
whose thoughtful remarks improved the quality of this
paper. The author strongly opposes the use of the
knowledge or ideas in this paper for aggressive military
applications.

9 References

1 AVIZIENIS, A., and CHEN. L.: ‘On the implementation of N-
version programming for softwarc fault-tolerance dur.ng program
execution’. Proceedings of COMPSAC-77, 1977, pp. 149-1 5 5
KNIGHT. J.C.. and LEVESON. N.: ‘An exowimentkl evaluation 2 ~ ~~~~~~

of the assumption of independence in mu1ti;ersion programming’.
IEEE Trans. Softw. Eng.,, 12, (I) , pp. 96-109

3 LYU, M., CHEN, J-H., and AVIZIENIS, A.: ‘E>perience in
metrics and measurements for N-version programmikg’, Int. J.
Reliability, Quality & Safety Eng.,, 1 , (I) , pp. 41-62
LITTLEWOOD. B.. and MILLER. D.R.: ‘Conceotu 11 modelline 4
of coincident failures in multiversion software’, lEEE Tran.;
Softw. Eng.,, 15, (12), pp. 1596-1614
HATTON, L.: ‘N-version design versus one good veixion’, IEEE 5
Sofiw.,, 14, (6), pp. 71-76

6 KOZA. J.R.: ‘Genetic oroeramming - on the orogramming of
computers by means of Aatiral selec6on’ (MIT P;es< Cambrage,
Massachusetts, 1992)
BACK, T., HAMMEL, U., and SCHWEFEL, H-P.: ‘Evolution-
ary computation: comments on the history and cirrent state’,
IEEE Truns. Evolut. Compui.,, 1, (I) , pp. 3-17
KOZA, J.R.: Proceedings of second annual conference on Genciic
programming, 13-16 July 1997, (Morgan Kaufmann, San Fran-
sisco, California)

9 NORDIN, P., and BANZHAF, W.: ‘Real time evolution of
behaviour and a world model for a miniature robot iising genetic
programming’. Technical Report 5/95, Department of Computer
Science, University of Dortmund. 1995

10 RYAN, C.O.: ‘Reducing premature convergence in :volutionary
algorithms’. PhD dissertation, Computer Science Department,
University College, Cork, 1996

I I BANZHAF, W., NORDIN, P., KELLER. R., 2nd FRAN-
CONCE, F.: ‘Genetic programming - an introduction’ (Morgan
Kaufmann, San Fransisco, California, 1998)

12 ZHANG, B.-T., and JOUNG, J.-G.: ‘Enhancing robustness of
genetic programming at the species level’. Proceedings of second
annual conference on Gmrtic progrcmnzn7ing, Stanforc University,
USA, July 1997, pp. 336-342

13 BOX, G.E., HUNTER, W.G., and HUNTER, J.S.: ‘Statistics for
experimenters - an introduction to design, data i nalysis and
model building’ (John Wiley & Sons, New York, 1971)

14 FELDT, R.: ‘An experiment on using genetic programming to
generate multiple software variants‘. Technical Rcport 98-1 3,
Department of Computer Engineering, Chalmers L.niversity of
Technology, 1998

15 US Air Force - 99: Military Specification: Aircraft Arresting Sys-
tem BAK-12NE32A; Portable, Rotary Friction, MIIA-A-38202C,
Notice 1, US Department of Defense, 1986

16 CHRISTMANSSON, J.: ‘An exploration of models for software
faults and errors’. PhD Dissertation, Deparrment cf Computer
Engineering, Chalmers University of Technology, 1998

17 FELDT, R.: ‘Generating multiple diverse software vt rsions using
genetic programming’. Euromicro conference 1993, Vasteris,
Sweden, August 1998, pp. 387-394

18 AVIZIENIS, A.: ‘Building dependable systenis: how to keep up
with complexity’. Special Issue from FTCS-25 Silver Jubilee,
Pasadena, California. June 1995, pp. 6 1 5

7

8

236 IEE Proc.-Softw., Vol. 145, No. 6, L’eceriibes I Y Y X

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 27, 2010 at 23:01 from IEEE Xplore. Restrictions apply.

