Test Diversity as a General Driver
for Test Automation

Robert Feldt, Chalmers University of Technology,
Gothenburg, Sweden

robert.feldt@chalmers.se

@drfeldt on Twitter

o

4 2 /
e
A N

S . /)

o ‘ A \é}l‘
A 3 e, N
(S R
W) BpeNES eig
‘-\;{t}‘x) P

R, e

s

mailto:robert.feldt@chalmers.se

40" INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING chiialst s

Chalmers,
Goteborg

\\\\\

S TH, Karlskrona

Testing still (mainly) based on intuition & heuristics

“To better cover system behaviour, run different test cases”

“Don’t put all your eggs in one basket”, spread the risk

To formalise, analyse, automate etc we need to quantify!

There are MANY distance functions

Furn

rurnm

They are (always) pair-wise and/or data-dependent

Today we’ll talk some about Test Set Diameter (TSDm):
- Works for any test information / data type
- Inputs, Outputs, State, Traces...
- Measures distance of a whole multiset, not just pairs
- And shows that test sets selected by it
- Increases code and fault coverage

So what is Information Theory?

Application of probability theory & statistics to problems of
quantification, storage and communication of information.

Reprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379423, 623-656, July, October, 1948.

A Mathematical Theory of Communication

By C.E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange

bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nyquist! and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages have meaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

Entropy a key concepts of Information Theory

Information Entropy = quantifies the amount of
uncertainty in a random variable.

= average amount of information conveyed by an event,
when considering all possible outcomes.

Entropy is measured in bits.
Alternatively called “shannons”.

Kolmogorov wanted a measure for single objects

THREE APPROACHES TO THE QUANTITATIVE DEFINITION
OF INFORMATION

A. N. Kolmogorov
Problemy Peredachi Informatsii, Vol. 1, No. 1, pp. 3-11, 1965

There are two common approaches to the quantitative definition of "information™ combinatorial and

probabilistic, The author briefly describes the major features of these approaches and introduces a new al-
gorithmic approach that uses the theory of recursive functions,

"Actually, it is most fruitful to discuss the quantity of information
‘conveyed by an object’ x ‘about another object’ y.”

As the "relative complexity" of an object y with a given x, we will take the minimal length I(p) of the "program”
p for obtaining y from x. The definition thus formulated depends on the "programming method," which is nothing other
than the function '

(P(P, x) =Y,

Kolmogorov complexity of object x = K(x) = length of shortest
program to generate x (given no input)

The “Compression trick”

Kolmogorov complexity is extremely powerful in theory but
cannot be calculated in practice. Enter Cilibrasi and Vitanyi
with the Compression trick:

Assuming a good, general compressor, ¢, with no “bias”,
we can approximate K(x) with C(x) = length(c(x)).

We can apply this trick to a large number of theoretical
results and formulas and get methods that often works
surprisingly well in practice.

Information distance

Roughly speaking, two objects are deemed close if we can
significantly “"compress” one given the information in the
other, the idea being that if two pieces are more similar,
then we can more succinctly describe one given the other.

Already at ICST 2008 in Lillehammer...

(zy) —min{C(z), C(y)}

NCD(z, y) max{C(z), C(y)}

Information distance between two strings x & y is the length of the
SOAEBERYS)ER IBaLRHRtariakes Bl belirtpterhote yEen
with YR < ASRET O R BPES sor
(zlib, bzip2, ppm, blosc, 1z4, zstandard, ...)

Many sources of test case information

Test Case
Execution

Setup (S)
Arg creatlon (1A)
Invocation (1)
ontrol Flow
(XC)
eXecution (X)
XS
ate change
(OS)

Outcome (O)

Return values
(OR)
Outcome (EO)

Evaluation (E)

VAriability of Tests (VAT) Model of test information sources/types

Test Set Diameter:

Quantifying the

Diversity of Sets of Test Cases

Robert Feldt Slmon Pouldlng David Clark, and Shin Yoo

0 DEPARTMENT

___ of sorrwart [ETT A KAIST
" ENGINEERING

NCD for multisets (aka “bags”, “lists”, ...)

NCD; (X) =

C(X) — mingex1C(x)}
maxzcx{C(X \ {z})}

NCD(X) = max {NCDl(X), max{NCD(Y)}}

YCX

The algorithm starts from the multiset Yy = X =

{x1, 29, ..

1)
2)
3)

4)

., Xy}, and proceeds as:

Find index ¢ that maximizes C (Y% \ {z;}).

Let Yk+1 =Y. \ T; .

Repeat from step 1 until the subset contains only two
strings.

Calculate NCD(X) as: maxg<x<n—2{NCD1(Y%)}.

TSDm = NCDm(subset of VAT info)

Test Case

w Execution

Arg creation (1A)

Setup (S)

Empirical study here (ICST16):
T—> Input-TSDm

Invocation (1)

eXecution (X)

ate ;gange — Trace —TS Dm (S BSTO 8)

r (OS)

l Return values

(OR) J

Outcome (O)

— Output-TSDm

Evaluation (E)

Outcome (EO)

Empirical study on Input-TSDm

Size (LOC) Language Measure
JEuclid MathML (XML) 11,556 Java Instruction Cov
ROME RSS/Atom (XML) 11,704 Java Instruction Cov
NanoXML XML 1,630 Java Instruction Cov
Replace 2 strings & 1 Regex 538 C Fault cov (seeded)

RQ1 - Correlation to code coverage: Are higher levels
of I-TSDm associated with higher levels of code coverage?

RQ2 - Structural coverage ability: Do test sets selected
based on I-TSDm lead to higher code coverage than randomly
selected test sets?

RQ4 - Fault finding ability: Do test sets selected based
on I-TSDm lead to higher fault coverage than test sets based
on random selection?

RQ2: Higher code coverage if select based on Input-TSDm?

Avg. Test Set Size

I-TSDm Random
SUT 90% | 95% | 9% || 90% | 95% | 99%
JEuclid 299 | 409 | 90.3 || 82.2 | 135.3 | 217.3
NanoXML 1.9 194 | 75.1 18.7 | 38.2 | 207.2
ROME 9.1 \ 21.7 | 51 21.9 | 51.0 | 129.0
9.8x

2.9X

RQ4: Higher fault coverage if select based on Input-TSDm?

|

Test sets on average 45% smaller
to reach 95% normalised fault coverage

Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics

- Easy to implement but fairly slow

- BEvaluated TSDm on sets of test inputs
- One of the more ambitious tasks in testing

- Reduces test set size 2x to 10x compared to random

- Useful & important concept for SW Quality in general:
- Not only for automated test creation
- Also analyse manual test suites & tester behaviour

TSDm has already been applied by others :)

Comparing White-box and Black-box Test Prioritization

Christopher Henard
University of Luxembourg

Mike Papadakis

University of Luxembourg

Mark Harman
University College London

christopher.henard@uni.lu michail.papadakis@uni.lu mark.harman@ucl.ac.uk

Yue Jia
University College London

yue.jia@ucl.ac.uk

ABSTRACT

Although white-box regression test prioritization has been
well-studied, the more recently introduced black-box pri-
oritization approaches have neither been compared against
each other nor against more well-established white-box tech-
niques. We present a comprehensive experimental compari-
son of several test prioritization techniques, including well-
established white-box strategies and more recently intro-
duced black-box approaches. We found that Combinato-
rial Interaction Testing and diversity-based techniques (In-
put Model Diversity and Input Test Set Diameter) perform
best among the black-box approaches. Perhaps surprisingly,
we found little difference between black-box and white-box
performance (at most 4% fault detection rate difference).
Ne also found the overlap between black- and white-box
faults to be high: the first 10% of the prioritized test suites
already agree on at least 60% of the faults found. These are
positive findings for practicing regression testers who may
not have source code available, thereby making white-box
techniques inapplicable. We also found evidence that both
black-box and white-box prioritization remain robust over
multiple system releases.

Yves Le Traon
University of Luxembourg

yves.letraon@uni.lu

Although white-box techniques have been extensively stud-
ied over two decades of research on regression test opti-
mization [25, 30, 47, 65], black-box approaches have been
less well studied [35, 36, 46]. Recent advances in black-box
techniques have focused on promoting diversity among the
test cases, with results reported for test case generation [9,
16, 18, 50] and for regression test prioritization [14, 35, 56,
69]. However, these approaches have neither been compared
against each other, nor against more traditional white-box
techniques in a thorough experimental study. Therefore, it is
currently unknown how the black-box approaches perform,
compared to each other, and also compared to the more
traditionally-studied white-box techniques.

Black-box testing has the advantage of not requiring source
code, thereby obviating the need for instrumentation and
source code availability. Conversely, one might hypothesize
that accessing source code information would allow white-
box testing to increase source code coverage and, thereby,
to increase early fault revelation. It has also been claimed
that white-box techniques can be expensive [49] and that the
use of coverage information from previous versions might de-
grade prioritization effectiveness over multiple releases [59].
These hypotheses and claims call out for a thorough com-

NCD in 5 lines of Julia code

Libz
compress(str) readbytes(ZlibDeflateInputStream(takebuf_array(IOBuffer(str))))
C(str) = length(compress(str))

lexorder(strs) = join(sort(strs), "")
ncd(x, y, ¢ = C) = (c(lexorder([x, yl)) - min(c(x), c(y))) / max(c(x), c(y))

NCDm would be another ~15 lines to do the looping!

Searching for (Test) Diversity

Robert Feldt, Simon Poulding

. N <

Searching for test data with feature diversity

Robert Feldt and Simon Poulding

Chalmers University of Technology and Blekinge Institute of Technology
robert.feldt@chalmers.se, robert.feldt@bth.se,
WWW home page: http://www.robertfeldt.net

Abstract. There is an implicit assumption in software testing that more
diverse and varied test data is needed for effective testing and to achieve
different types and levels of coverage. Generic approaches based on in-
formation theory to measure and thus, implicitly, to create diverse data
have also been proposed. However, if the tester is able to identify features
of the test data that are important for the particular domain or context
in which the testing is being performed, the use of generic diversity mea-
sures such as this may not be sufficient nor efficient for creating test
inputs that show diversity in terms of these features. Here we investigate
different approaches to find data that are diverse according to a specific
set, of features, such as length, depth of recursion etc. Even though these
features will be less general than measures based on information theory,
their use may provide a tester with more direct control over the type of

https://arxiv.org/abs/1709.06017

Actually, our current paper (in submission) is not yet on arXiv,
it has more experiments and is the one I'll use here...

Searching for Test Data with Diverse Feature Values

Anon Anonymousll, AA2, AA3, and AA4?

Abstract—There is an implicit assumption in software testing
that more diverse and varied test data is needed for effective
testing and to achieve different types and levels of coverage.
Generic approaches based on information theory to measure and
thus, implicitly, to create diverse data have also been proposed.
However, often a tester knows of or can identify specific features
of the test data that are important for the domain or context
where the testing is being performed. In such cases, the use of
generic diversity measures may not be sufficient nor efficient.
Here we investigate different approaches to find data that are
diverse according to a specific set of features. Even though these
features will be less general than diversity measures based on
information theory, their use may provide a tester with more
direct control over the type of test data diversity. Our experiment
evaluates seven different feature-specific diversification methods
on 10 different test data generation problems and feature spaces.
Our results show that diversification search based on evolutionary
strategies can be efficient and robust to variation in the gener-
ation task. However, methods based on random resampling are
not far behind in terms of diversity and can offer other benefits.

Index Terms—Keywords: Software Testing, Diversity, Search-
based Software Testing, Empirical Study

inputs that are in a partge d for
which the count of nume range
(feature 2). Maybe the long
numeric inputs there are good

and varied testing, we sty ', ‘
that are spread within thews
opposed to diverse string
of numeric characters. To™ = we.,
test inputs so we want to_
in the space spanned by the features.

Here we target that specific form of test diversity (TD)
that we call the Feature-Specific TD problem: how to sample
as diverse and complete set of test inputs as possible in a
specific area of a specified feature space? This problem is in
contrast to the General TD problem where we seek diversity
in general without requiring diversity within in a particular set
of features.

These approaches are likely to be complementary. General
TD allows testers to generate data regardless of specific
features, whereas Feature-Specific TD allows testers to control

GOdelTest Framework

Extracts a model of choice points from a non-
deterministic generator; optimises the choice model
using optimisation to meet specific objectives

4 N
e |
generator g Y ?;(%
L) o i — i
% 2,1,4,0,2,3, 0]
Godel numbers property
f) metrics
choice model
N / . . : ™
L (metaheuristic)
RALTY optimisation
- N probability distributions - J
sampler
factory

A simple expression generator (for testing calculators)

dgenerator ExprGen begin

start () = expression/()

expression() = operand() * operator() * operand ()
operand () = " (" * expression() * ")"

operand () = (choose (Bool) 2 "-=-" : "") %

join (plus (digit))

digit () = choose(Int,0,9)
operator () = "+"
operator () = "-"
operator () = "/"
operator () = "*"

end

2 Number of digits in datum

30 -

[\
o
1

Hillclimb (search)

©) e e

@ o @0 o o000

L ®) @@ o)

o e @ (O @00 O O)

O @ O @0 OO @00 O O O

eo0oe0 o000 00° ®) 0o O) O ®)

o000 0Q00@O0O0®0O e

@00

o000 00O0OO @0
L N N
ce000o0e00eO0OCOOOGOEOOOGOOCOOCOROOE O
o000 o000 00
00000 OCOOOOOGOOOOOGOOPOOOOPOOOODOEO®O® T O

000000 O0OC0COCONOOOOOGIOGOOONOOOOOOCPODOROOODOODO®OODOOOOO

o000 00 e e e 0000

@ 0 0e @) o

RN N NN N o000 o0e0 o0 @ |

OOQOOOQOOOCQQOOOOQOOR

ndém

MCS (search)

6hce

hillclimb-4-20, FSHC cov. = 53.8%

Length of datum

40

ooooooooooooooo
ooooooooooooooo
oooooooooooooooooo
ooooooooooooooo
ooooooooooo
ooooooo

(a) Length (x-axis) and number of digits
(y-axis) for the arithmetic expression input
domain, using a random method.

_es_30_005_005

oooooo
oooooo

ooooooo

ooooooooo
L
ooooooooooooooo
oooooooooooooo
ooooooooooo
ooooooo

(d) Length (x-axis) and number of digits (y-
axis) for the arithmetic expression input do-
main, using an evolutionary strategy searcher.

ooooooo
oooooooo
ooooooooo

oooooooo
oooooooooo
oooooo
ooooooo

seseees o
—eeseseias
sesesssesosos o
oo

num_lcaves

(b) Tree size (x-axis) and height (y-axis) (c) Number of leaves (x-axis) and the tree
for the general tree input domain, using a balance (y-axis) for the BST input domain,
random method. using a random method.

_es_30_005_005 _es_30_005_005

oooooo
ooooooo
ooooooo

num_lcaves

(e) Tree size (x-axis) and height (y-axis) (f) Number of leaves (x-axis) and the tree
for the general tree input domain, using an balance (y-axis) for the BST input domain,
evolutionary strategy searcher. using an evolutionary strategy searcher.

Fig. 2: Plots of six feature spaces, for our three input domains. Here, we show the different feature values (blue dots) sampled
when using different search-based methods, such as Random (2a, 2b and 2c, referred as RandOnce) and an Evolutionary
Strategy (2d, 2e and 2f, referred as F£.S(30)). The darkness of the dots means that the searcher sampled more data in those
respective areas.

Feature space coverage (%)

N .

Searcher
40 - es_100_005_005

es_30 001 _005
@ es_30_005_005
@ lhs_bins10_freq5
© lhs_bins30_freql0
30 - rand_freql_recdepthl0

rand_once

1 1 1 1
le+04 2e+04 Se+04 le+05
Number of sampled datums

e

CpC

(@]

(@)

(@)

(@)
20~ Searcher
IS
\q.; es_100_005_005
%0 v es_30 _001_005
3}
2 P3 ° es_30_005_005
§ ““'”f‘ @ lhs_bins10_freq5

%
% lhs_bins30_freql0
)
% rand_freql_recdepth10
O
[rand_once
10 -
10000 20000 50000

Number of sampled datums

TABLE I: Descriptive statistics on the performance of the 7 investigated diversification methods on the 10 different 2-
dimensional feature spaces for 3 different generators when given 60 seconds of search time. Each cell of the table has
the average coverage of the preferred feature space (mean FSHC over 10 runs), and the rank of the method (in parentheses).
The rightmost column shows the average FSHC for the row and the bottom row shows the average coverage and rank for each
method.

Generator FeatureSpace ES(30) ES(100) LHS(10,5) LHS(30,10) RandFreql ES(30,0.001) RandOnce Avg.
BST height+balance 81.4 (1) 79.9 (4) 80.3 (2) 80.1 (3) 79.9 (5) 79.0 (6) 64.2 (7) 77.8
BST leaves+height 67.7 (4) 65.6 (9) 68.7 (1) 68.4 (2) 67.8 (3) 62.8 (6) 51.8 (7) 64.7
BST leaves+nodes 38.9 (2) 39.5 (1) 36.1 (4) 36.4 (3) 35.3 (5) 33.3 (6) 26.8 (7) 35.2
BST leaves+balance 94.0 (3) 94.0 (2) 94.5 (1) 93.9 (4) 93.1 (H) 87.9 (6) 85.9 (7) 91.9
BST size+height 41.7 (1) 40.7 (4) 40.9 (2) 40.9 (3) 40.3 (5) 35.6 (6) 24.0 (7) 37.7
BST size+balance 40.2 (1) 39.5 (4) 40.1 (2) 39.7 (3) 39.4 (5H) 36.5 (6) 28.4 (7) 37.7
Expr length+digits 55.3 (2) 55.4 (1) 51.1 (3) 51.0 (H) 51.1 (4) 46.1 (6) 28.8 (7) 48.4
Tree height+leaves 29.5 (2) 31.7 (1) 26.0 (3) 25.5 (H) 26.0 (4) 18.4 (7) 19.2 (6) 25.2
Tree size+height 23.6 (2) 26.2 (1) 15.3 (4) 14.7 (5) 15.4 (3) 12.7 (6) 10.7 (7) 16.9
Tree size+leaves 12.8 (2) 13.8 (1) 9.8 (3) 9.6 (4) 9.6 () 7.4 (6) 5.6 (7) 9.8

485 (2.0) 486 (2.4) 46.3(2.5) 46.0 (3.7) 45.8 (4.4 42.0 (6.1) 34.5 (6.9)

Diversity to Guide Robustness Testing

Robert Feldt, Simon Poulding

5 e N
- -

Sl S Or SOFTWARE

% aaa g S

% e ENGINEERING

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

Generating Controllably Invalid and Atypical Inputs
for Robustness Testing

Simon Poulding
Software Engineering Research Lab
Blekinge Institute of Technology

37179 Karlskrona, Sweden
Email: simon.poulding @bth.se

Abstract—One form of robustness in a software system is its
ability to handle, in an appropriate manner, inputs that are
unexpected compared to those it would experience in normal
operation. In this paper we investigate a generic approach to
generating such unexpected test inputs by extending a framework

Robert Feldt
Software Engineering Research Lab
Blekinge Institute of Technology
37179 Karlskrona, Sweden
Email: robert.feldt@bth.se

In previous work we have described GodelTest, a framework
for generating complex, highly-structured test data [2]. A key
feature of Go6delTest is a clear separation between generator
code that defines how to build a test input and a choice model

A PRI D, N A, I SRR [. SRR J .

http://ieeexplore.ieee.org/document/ 7899038/

T

valid inputs

invalid inputs A2

Fig. 2. The intended relationship between the typical (1), atypical (A), and
invalid (/) test set categories.

TABLE 1
BYTES OF COMPRESSED WARNING AND ERROR MESSAGES PER
CHARACTER OF TEST INPUT FOR THE TEST SET CATEGORIES.

Test Set | Compressed Message Bytes Hypothesis Test
Category per Test Input Character VS. p-value
T 8.59 x 10— — —
Aq 7.44 x 1073 T <107°
Ao 9.34 x 103 Ay | 1.87x 10735
I 1.10 x 102 Ay <107°
I 1.23 x 102 I | 3.83x107°

Finding a boundary between valid and invalid
regions of the input space

Bogdan Marculescu*
Robert Feldt*!

*Blekinge Institute of Technology
School of Computing
Karlskrona, Sweden

TChalmers and the University of Gothenburg
Dept. of Computer Science and Engineering
Gothenburg, Sweden

Abstract—In the context of robustness testing, the bound-
ary between the valid and invalid regions of the input space
can be an interesting source of erroneous inputs. Knowing
where a specific software under test (SUT) has a boundary
is also essential for validation in relation to requirements.
However, finding where a SUT actually implements the
boundary is a non-trivial problem that has not gotten much
attention.

This paper proposes a method of finding the boundary
between the valid and invalid regions of the input space,
by developing pairs of test sets that describe that boundary
in detail.

The proposed method consists of two steps. First, test
data generators, directed by a search algorithm to max-
imise distance to known, valid test cases, generate valid test
cases that are closer to the boundary. Second, these valid
test cases undergo mutations to try to push them over the
boundary and into the invalid part of the input space. This

- A

representation. Different stages of software development
have different notions of what the input domain is, and
where the boundary between the valid and invalid input
spaces lies. This region of the input space is identified
as a rich source of software errors.

In this paper we will focus on robustness, as a non-
functional quality criterion. We will use the definition
of robustness proposed by AviZenis [2]: “dependability
with respect to erroneous inputs”, a deeper discussion
of robustness testing can be found in [3]. In line with
Ammann and Offutt [1], we argue that the boundary
between the valid and invalid input spaces is a rich
source of inputs that could be considered valid at one
stage of development, e.g. specification, but invalid in the
implementation and thus could be considered erroneous

https://arxiv.org/pdf/1810.06720.pdf

Presumed boundary
e of the valid space

~
~N
N

Maximised Distance

-~ -
- -
- —_
—— - ——

C2

; C1
ATest Case
~ .~ Candidate 1)

Fig. 2. Step 1: Finding the inner boundary of the va
by the generator.

1d set, as defined

Presumed boundary

p_— -
-
-

/ C1
A(Test Case Valid Mutants
~ -~ Gandidate 1)

- -
T - ————

‘——
-
-
-

Invalid Mutants

Fig. 3. Step 2: Oscillating between valid and invalid candidates
that can be obtained through one basic mutation step. The boundary
between the valid and invalid spaces, in this region of the input space,
can be assumed to be between the two sets of candidates.

Visualizing test diversity to support test optimisation

Francisco G. de Oliveira Neto, Robert Feldt, Linda Erlenhov

Dept. of Computer Science and Engineering

Chalmers | University of Gothenburg
Gothenburg, Sweden

{gomesf,robert.feldt,linda.erlenhov } @chalmers.se

Abstract—Diversity has been used as an effective criteria
to optimise test suites for cost-effective testing. Particularly,
diversity-based (alternatively referred to as similarity-based)
techniques have the benefit of being generic and applicable across
different Systems Under Test (SUT), and have been used to
automatically select or prioritise large sets of test cases. However,
it is a challenge to feedback diversity information to developers
and testers since results are typically many-dimensional. Fur-
thermore, the generality of diversity-based approaches makes
it harder to choose when and where to apply them. In this
paper we address these challenges by investigating: i) what
are the trade-off in using different sources of diversity (e.g.,
diversity of test requirements or test scripts) to optimise large test
suites, and ii) how visualisation of test diversity data can assist
testers for test optimisation and improvement. We perform a
case study on three industrial projects and present quantitative
results on the fault detection capabilities and redundancy levels
of different sets of test cases. Our key result is that test similarity
maps, based on pair-wise diversity calculations, helped industrial
practitioners identify issues with their test repositories and decide
on actions to improve. We conclude that the visualisation of
diversity information can assist testers in their maintenance and
optimisation activities.

Index Terms—Keywords: Software Testing, Diversity, Search-
based Software Testing, Empirical Study

Jose Benardi de Souza Nunes
Department of Computing Systems
Federal University of Campina Grande
Campina Grande, Brazil
jose.nunes @computacao.ufcg.edu.br

Automated diversity-based test optimisation techniques cal-
culate distance values and choosing from (dis)similar tests.
Even though there are some proposals of methods that cal-
culate diversity for whole sets of tests at once [4] the vast
majority of approaches is based on pair-wise calculations.
Not only does this lead to performance challenges, due to
the O(n?) execution cost, it also makes diversity information
hard to visualise and th T
Thus it is hard to use di
improvement scenarios ™
with a relatively small
10,000 diversity values
100-dimensional ! vect

When testers and d

.........

process or digest the i 088 B s S s L g o
Visy, "'\q;"*" e
to get acted upon or h e et e

been found for debuggi
if developers could no
results had been reac
selection techniques ar
the original set being s

https://arxiv.org/pdf/1807.05593.pdf

Test

Repositorie
S
e N
Step 1 Encoding of test cases
N y,
e N
Calculate pairwise distance
Step 2 among test cases
. J
_ BH=EE T :
Distance = : _ , _ , :
Matrix = Dimensionality Reduction |
= | (e.g., MDS) |
Select tests with minimum E L
Step 3 pairwise similarity : * l
Optimised i
Subsets § Similarity Maps |
i Teams |

Fig. 1. The general steps for diversity-based test optimisation. Our paper
proposes the creation of similarity maps and presentation of the diversity
information to stakeholders.

https://hub.docker.com/r/robertfeldt/mdist/

e Q Search Explore Help BSSigniup™ Sign In

PUBLIC REPOSITORY

robertfeldt/mdist 1y

Repo Info Tags

Short Description Docker Pull Command 0
Calculate distances and similarities between files. docker pull robertfeldt/mdist
Owner

Full Description

Simple command line interface to calculate distances between files. Include a large number of distance a robertfeldt
functions, both classical ones (Levenshtein, Q-Grams etc) and compression based ones (NCD based on

different compressors).

This is a command line interface to the MultiDistances.|l julia library.

tcl = "a b c d" t1 t2 t3 t4 t5 t6
te2 = "a b e e t1 0.000 0333 0916 0900 0.888 0571
tc3 = "h i jklmnw 2 0333 0000 0916 0300 0888 0571
t3 0916 0916 0000 0923 0916 0916
tcd = "opgr s"
t4 0900 0900 0923 0.000 0900 0.900
teS = "wx y z t5 0.888 0.888 0916 0900 0.000 0571
tc6é = "a b y z" t6 0571 0571 0916 0900 0.571 0.000
t5
té
£2 t4
o kol t1 t3

Fig. 2. An example of a similarity map obtained from a toy test suite. We use
Jaccard Index based on k-grams of length 5 to calculate the distance matrix.
Note that the goal with a similarity map 1s to observe the relative distances
between the tests; the scales on the y-axis and x-axis are thus not important.

SUMMAR?
THE PRO.
WHERE T

THAT

Projects

Project 1
Project 2
Project 3

Project 1 - Requirements Project 1 - Names

Project 2 - Names

‘!w&‘
o .

Project 3 - Requirements

Project 1 - Steps

SE STUDY.
iD YEARS

LLY, NOTE
E NOT

t activity

2017
-2017
-2017

Project 2 - Steps

Project 3 - Names

Conclusions

- Information theory can provide

- theoretically just
- practically usefu
any data type,

ifled metrics for (automated) testing,

(since universal) metrics that work for

- new ways to formalise & understand testing problems.

- Goupling these metrics with search is powerful!

- It has helped us formalise, automate, and evaluate:

- Value of diversity In testing,

- Robustness testing,

- (soon to be submitted) Bou
- Focusing on available informa

ndary Value test

INn Industry collaborations.

lon also has ac

INg.
ded value

robert.feldt@chalmers.se

