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Testing still (mainly) based on intuition & heuristics

“To better cover system behaviour, run different test cases”

“Don’t put all your eggs in one basket”, spread the risk

To formalise, analyse, automate etc we need to quantify!
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A metric on a set Xis a function (called the distance function or simply distance)
d: Xx X — [0,%),

where [0,») is the set of non-negative real numbers (because distance can't be
negative so we can't use R), and for all x, y, zin X, the following conditions are

satisfied:
1. d(z,y) =20 non-negativity or separation axiom
2. dz,y) =0 =y identity of indiscernibles
3. d(z,y) = d(y,x) symmetry
4 d(;r, z) < d(;z.‘, y) + d(y, z) subadditivity or triangle inequality
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They are (always) pair-wise and/or data-dependent

Today I’ll briefly present Test Set Diameter (TSDm):
- Works for any test information / data type
- Inputs, Outputs, State, Traces...
- Measures distance of a whole multiset, not just pairs
- And shows that test sets selected by it
- Increases code and fault coverage
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Reprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379-423, 623-656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange

bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nyquist! and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages have meaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.
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So what is Information Theory?

Application of probability theory & statistics to problems of
quantification, storage and communication of information.

Reprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379-423, 623-656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON
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OF INFORMATION

A. N. Kolmogorov
Problemy Peredachi Informatsii, Vol. 1, No. 1, pp. 3-11, 1965

There are two common approaches to the quantitative definition of "information": combinatorial and

probabilistic, The author briefly describes the major features of these approaches and introduces a new al-
gorithmic approach that uses the theory of recursive functions,

"Actually, it is most fruitful to discuss the quantity of information
‘conveyed by an object’ x ‘about another object’ y.”

As the "relative complexity” of an object y with a given x, we will take the minimal length I(p) of the “program”
b for obtaining y from x. The definition thus form ulated depends on the "programming method,” which is nothing other
than the function '

(P(P, 93) =Y,

Kolmogorov complexity of object x = K(x) = length of shortest
program to generate x (given no input)
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Kolmogorov complexity is extremely powerful in theory but
cannot be calculated in practice. Enter Cilibrasi and Vitanyi
with the Compression trick: Dl e
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Assuming a good, general compressor, ¢, with no “bias”,
we can approximate K(x) with C(x) = length(c(x)).

We can apply this trick to a large number of theoretical
results and formulas and get methods that often works
surprisingly well in practice.
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Information distance

Roughly speaking, two objects are deemed close if we can
significantly “"compress” one given the information in the
other, the idea being that if two pieces are more similar,
then we can more succinctly describe one given the other.



Already at ICST 2008 in Lillehammer...

Searching for Cognitively Diverse Tests:
Towards Universal Test Diversity Metrics

Robert Feldt, Richard Torkar, Tony Gorschek and Wasif Afzal
Dept. of Systems and Software Engineering
Blekinge Institute of Technology
SE-372 25 Ronneby, Sweden
{rfd|rto|tgo|waf}@bth.se

Abstract

Search-based saftware testing (SBST) has shown a po-
tential to decrease cost and ncrease gualily of lesiing-
related software development activities. Research in SBST
has so far mainly focused on the search for isolated tests

like statement or branch coverage, even though other ap-
proaches have been reported [3, 14]. However, only a few
studies have used relative fitness functions that compares
newly found tests to the ones previously in the test set, to
optimize the test set as a whole [2]. This is unfortunate
since an optimal set of tests 18 what 1s ultimately needed.
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max{K (z|y), K (y|z)}
max{ K (), K(y)}

NID(z,y)

Information distance between two strings x & y is the length of the
shortest program that outputs x given input vy, or that outputs y given
Input X, whichever is largest
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Already at ICST 2008 in Lillehammer...

NCD(z.y) - C@v) = min{C(2). C(w)}

max1C(z), C(y)}

where C(s) is length of string s after being compressed
with your favourite compressor
(zlib, bzip2, ppm, blosc, [z4, zstandard, ...)




Many sources of test case information
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VAriability of Tests (VAT) Model of test information sources/types



Test Set Diameter:

Quantifying the

Diversity of Sets of Test Cases

Robert Feldt, Simon Pouldlng David Clark, and Shin Yoo
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NCD for multisets (aka “bags”, “lists”, ...)

_ C(X) — mingex{C ()}

NCDLA) = e x [C(X \ (D))
NCD(X) = max {NCDl(X), SIPC&]“}({NCD(Y)}}

The algorithm starts from the multiset Yy = X =
{xy,22,...,2,}, and proceeds as:

1)  Find index ¢ that maximizes C'(Y% \ {x;}).

2) LetYi 1 =Yy \x.

3) Repeat from step 1 until the subset contains only two
strings.

4)  Calculate NCD(X) as: maxo<r<n—2{NCD;(Y%)}.
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Empirical study on Input-TSDm

Size (LOC) Language Measure
JEuclid MathML (XML) 11,556 Java Instruction Cov
ROME RSS/Atom (XML) 11,704 Java Instruction Cov
NanoXML XML 1,630 Java Instruction Cov
Replace 2 strings & 1 Regex 538 C Fault cov (seeded)

RQ1 - Correlation to code coverage: Are higher levels
of I-TSDm associated with higher levels of code coverage?

RQ2 - Structural coverage ability: Do test sets selected
based on I-TSDm lead to higher code coverage than randomly
selected test sets?

RQ4 - Fault finding ability: Do test sets selected based
on I-TSDm lead to higher fault coverage than test sets based

on random selection?
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RQ2: Higher code coverage if select based on Input-TSDm?

Avg. Test Set Size

I-TSDm Random
SUT 9% | 95% | 99% || 90% | 95% | 99 %
JEuclhd 299 | 40.9 | 90.3 || 82.2 | 135.3 | 217.3
NanoXML 1.9 19.4 | 75.1 18.7 | 38.2 | 207.2
ROME 9.1 21.7 | 31 21.9 | 51.0 | 129.0
9.8x

2.5x
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/' ﬁ/_/_/ﬁ/

/

| Test sets on average 45% smaller
/ to reach 95% normalised fault coverage



Conclusions of the TSDm study



Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter



Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets




Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source




Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics



Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics

- Easy to implement but fairly slow



Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics

- Easy to implement but fairly slow
- BEvaluated TSDm on sets of test inputs




Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics

- Easy to implement but fairly slow

- BEvaluated TSDm on sets of test inputs
- One of the more ambitious tasks in testing




Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics

- Easy to implement but fairly slow

- BEvaluated TSDm on sets of test inputs
- One of the more ambitious tasks in testing

- Reduces test set size 2x to 10x compared to random



Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics

- Easy to implement but fairly slow

- BEvaluated TSDm on sets of test inputs
- One of the more ambitious tasks in testing

- Reduces test set size 2x to 10x compared to random
- Useful & important concept for SW Quality in general:



Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics

- Easy to implement but fairly slow

- BEvaluated TSDm on sets of test inputs
- One of the more ambitious tasks in testing

- Reduces test set size 2x to 10x compared to random

- Useful & important concept for SW Quality in general:
- Not only for automated test creation



Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics

- Easy to implement but fairly slow

- BEvaluated TSDm on sets of test inputs
- One of the more ambitious tasks in testing

- Reduces test set size 2x to 10x compared to random

- Useful & important concept for SW Quality in general:
- Not only for automated test creation
- Also analyse manual test suites & tester behaviour



TSDm is already being applied by others :)

Comparing White-box and Black-box Test Prioritization

Christopher Henard

University of Luxembourg

Mike Papadakis
University of Luxembourg

Mark Harman
University College London

christopher.henard@uni.lu michail.papadakis@uni.lu mark.harman@ucl.ac.uk

Yue Jia
University College London

yue.jia@ucl.ac.uk

ABSTRACT

Although white-box regression test prioritization has been
well-studied, the mare recently introduced black-bax pri-
oritization approaches have neither heen compared against
each ather nar against mare well-estahlished white-hox tech-
nicques. We present a comprehensive experimental compari-
son of several test prioritization techniques, including well-
established white-box strategies and more recently intro-

duced black-box approaches. We found that Combinato-
rial Interaction Testing and diversity-hased techniques (In-
put Madel Diversity and Input Test Ser. Diameter) perform

best among the black-box approaches. Perhaps surprisingly,
we found little difference between black-box and white-box
performance (at most 4% fault detection rate difference).

faults to be high: the first 10% of the prlormzed test suites
already agree on at least 60% of the faults found. These are
positive findings for practicing regression testers who may
not have source code available, thereby making white-box
techniques inapplicable. We also found evidence that both
black-box and white-box prioritization remain robust over
multiple svstem releases.

Yves Le Traon
University of Luxembourg

yves.letraon@uni.lu

Although white-box techniques have been extensively stud-
ied over two decades of research on regression test opti-
mization [25, 30, 417, 65|, black-box approaches have been
less well studied 35, 36, 416]. Recent advances in black-box
techniques have [ocused on promoting diversity among Lhe
test cases, with results reported for test case generation |9,
16, I8, hO| and for regression test prioritization 14, 36, 56,
69]. However, these approaches have neither been compared
against each other, nor against more traditional white-box
techniques in a thorough experimental study. Therefare, it is
currently unknown how the black-bax approaches perform,
compared to each other, and also compared to the more
traditionally-studied white-box techniques.

Black-box testing has the advantage of not requiring source
code, therebyv obviating the need for instrumentation and
source code availability. Conversely, one might hypothesize
that accessing sonrce code information wonld allow white-
hox testing to increase source code coverage and, thereby,
to increase early fault revelation. It has also heen claimed
that whire-hox techniques can be expensive 49| and that the
use of coverage information from previons versions might de-
grade prioritization effectiveness over multiple releases [59].
These hypotheses and claims call out for a thorongh com-



NCD in 5 lines of Julia code

Libz
compress(str) readbytes(ZlibDeflateInputStream(takebuf_array(IOBuffer(str))))
C(str) = length(compress(str))

lexorder(strs) = join(sort(strs), "")
ncd(x, y, ¢ = C) ( c(lexorder([x, yl)) — min(c(x), c(y)) ) / max(c(x), c(y))

NCDm would be another ~15 lines to do the looping!
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Searching for test data with feature diversity

Robert Feldt and Simon Poulding

Chalmers University of Technology and Blekinge Institute of Technology
robert.feldt@chalmers.se, robert.feldt@bth.se,
WWW home page: http://wuw.robertfeldt.net

Abstract. There is an implicit assumption in software testing that more
diverse and varied test data is needed for eflective testing and to achieve
different types and levels of coverage. Generic approaches based on in-
formation theory to measure and thus, implicitly, to create diverse data
have also been proposed. [Towever, if the tester is able to identify features
of the test data that are important for the particular domain or context
in which the testing is being performed, the use of generic diversity mea-
sures such as this may not be sufficient nor efficient for creating test
inputs that show diversity in terms of these features. Ilere we investigate
different approaches to find data that are diverse according to a specific
set of features, such as length, depth of recursion etc. Even though these
features will be less general than measures based on information theory,
their use may provide a tester with more direct control over the type of

https://arxiv.org/abs/1709.06017



GOdelTest Framework

Extracts a model of choice points from a non-
deterministic generator; optimises the choice model
using metaheuristic optimisation to met bias
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A simple expression generator (for testing calculators)

dgenerator ExprGen begin

start () = expression/()
expression() = operand() * operator() * operand()
operand () = " (" * expression() * ")"
operand () = (choose (Bool) 2 "-=-" : "") %
join (plus (digit))
digit () = choose (Int,0,9)
operator () = "+"
operator () = "-"
operator () = "/"
operator () = "*"

end
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Method ChoiceModel Runs Coverage std Time Preferred
hillclimb — 4 — 20 RecDepthb 25 52.7 1.3 235.9 80.b
rand — mfreqb — LHS10 RecDepthb 25 52.5 0.5 519.4  65.7
rand — mfreql0 — LHS30 RecDepthb 25 52.3 0.5 348.7 66.8

rand — freql RecDepthb 25 52.2 0.5 980.1 61.9
rand — freql Default 10 49.1 0.82237.1 b1.1
nmcs — 4 — direct Default 25 464 1.6 217.6 62.4
nmcs — 2 — direct Default 20 454 1.2 231.3 61.9
nmcs — 2 — batch Default 20 45.2 1.2 234.3 61.5
nmcs — 4 — batch Default 25 a4.7 1.2 228.6 61.7
rand — once Default 20 39.6 0.4 265.2 64.0

Table 1. Descriptive statistics on the performance of the 10 investigated methods on
the 2-dimensional feature space of string length and number of digits for the ExprGen
generator. The ‘Runs’ columns shows the number of runs per method, ‘Coverage’ shows
the mean IF'SHC while ‘std’ is its standard deviation. Finally, ‘Time’ is the mean search
time in seconds and ‘Preferred’ is the ratio of samples that is within the preference
hypercube.
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Generating Controllably Invalid and Atypical Inputs
for Robustness Testing

Simon Poulding
Software Engincering Rescarch Lab
Blekinge Institute of Technology
37179 Karlskrona, Sweden
Email: simon.poulding@bth.se

Abstract—One form of robustness in a software system is its
ability to handle, in an appropriate manner, inputs that are
unexpected compared to those it would experience in normal
operation. In this paper we investigate a generic approach to
generating such unexpected test inputs by extending a framework

Robert Feldt
Software Engineering Research Lab
Blekinge Institute of Technology
37179 Karlskrona, Sweden
Email: roberi.feldt@bth.se

In previous work we have described GédelTest, a framework
for generating complex, highly-structured test data [2]. A key
featurc of GodelTest is a clear separation between generator
code that defines how to build a test input and a choice model
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Fig. 2. The intended relationship between the typical ("), atypical (A), and
invalid (/) test set categories.
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Fig. 2. The intended relationship between the typical ("), atypical (A), and
invalid (/) test set categories.

TABLE 1
BYTES OF COMPRESSED WARNING AND ERROR MESSAGES PER
CHARACTER OF TEST INPUT FOR THE TEST SET CATEGORIES.

Test Set | Compressed Message Bytes Hypothesis Test
Category per Test Input Character VS. p-value
T 8.59 x 10—4 — —
Ay 7.44 x 1073 T < 1079
Ao 9.34 x 10—3 Ay | 1.87 x 1073
I8 1.10 x 10—2 Ay < 1077
I 1.23 x 102 Ih | 3.83x107°
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Conclusions

- Information theory can provide

- theoretically justified metrics for (automated) testing,
- practically useful (since universal) metrics that work for
any data type,

- new ways to formalise & understand testing problems.
- Goupling these metrics with search is powerful!

- It has helped us formalise, automate, and evaluate:
- Value of diversity In testing,
- Robustness testing,
- (soon In report) Boundary Value testing.
- Focusing on available information also has added value
INn Industry collaborations.




robert.feldt@chalmers.se



