
Software Engineering and
Verification Research Trends
2008-12-16 @ SAAB / RUAG Space

Robert Feldt

BTH & Chalmers & SWELL R. School (swell.se)

fredag den 20 november 2009

Overview

BTH & SWELL

“Smorgasbord” of a number of fairly recent results:

Selective, Homeworkless reviews

Capture / Re-capture models

Acceptance tests for clarifying requirements

Empirical evaluations of Test-Driven Development

PEX and CHESS

ICST 2009 statistics

Testability in practice

Test-Case Driven Inspections

Current study here: ECSS and more effective V&V

fredag den 20 november 2009

BTH/SERL

• SERL = Swedens largest SE research group

• Req Eng, Automated V&V, Empirical

• 1 Professor (top 5 in world), 6 PhDs, 8 PhD
students

• BTH = Blekinge Tekniska Högskola

• Focused on IT & Sustainability

• Largest number of international students

• Bachelor SE, MSc, Master SE, EuroMaster SE

fredag den 20 november 2009

MdH, Västerås

BTH, Ronneby
LTH, Lund

ITUniv & Chalmers,
Göteborg

SWELL - Swedish V&V Excellence

Research School
7 PhD students and growing
4 Universities
10+ Companies

fredag den 20 november 2009

Reviews and Inspections

Well established (both theory & practice) as

Most efficient (defects found / manhour)

Very cost effective

80-90% of defects found with 25% less effort (than other V&V)

Still: Not many use it!

Two recent results:

Capture/Re-capture Models

Selective, Homeworkless reviews

fredag den 20 november 2009

Spectrum of Review Techniques

Technique Key characteristics Preparations

Formal
Rigorous, Planned, Many roles,

Documented, Re-work / Re-review
Extensive

Team review Roles, Some preparation, Less rigorous Some

Walkthrough Only some roles prepare Maybe

Pair
programming

Direct/Online, Only 2 roles -

Peer desk
check

Indirect, No preparation, Only 1 -

Ad hoc Anything goes -

fredag den 20 november 2009

Selective, Homeworkless Reviews

Developed at IBM Haifa Labs 2003-

Presented 2008 (Farchi and Ur, ICST 2008)

Problems:

People do not use reviews enough

With shorter lead times, reviews are skipped

Problems are Organizational rather than Technical

How get them to take seriously & do continuously?

fredag den 20 november 2009

Selective, Homeworkless Reviews

Solutions:

Don’t review everything => reduce cost

Artifact selection process => focus where effective

Homeworkless, no preparations => less time&cost

Specific versions for different artifacts

Fixed time part of regular project schedule (1.5 hours / week)

Results:

Review rates similar to inspections (100-150Loc/hour)

2.2 +/- 0.34 issues found / personhour (Fewer but major)

Much reduced costs

fredag den 20 november 2009

Selective, Homeworkless Reviews

Changes:

Moderator prepares 15 minutes (select artifact & review tech.)

No one else prepares

Fixed time every week for reviews

Artifact-specific review techniques

fredag den 20 november 2009

Comparing SHRs to traditional

fredag den 20 november 2009

Artifact Selection Process

Two main techniques used

Concern-based artifact selection

Create Table: (rows = artifacts) x (cols = “concerns”)

Prioritize artifacts & select top

Any relevant concern can be used

Test selection

Choose tests/scenarios (with normal test selection techn.)

Review code by “manually” executing tests

fredag den 20 november 2009

Concern-based artifact selection

Artifact “First of a kind” “Complex
Synchronization”

... “Developer
experience”

Module 1 X High

Module 2 Low

...

Module N X X Medium
Selected first!

Selected 2nd!

Not reviewed!

fredag den 20 november 2009

Artifact-specific review techniques used

Paraphrasing is backbone technique

Sequential walkthrough while explaining logic, interface &
behavior

Reader can be stopped when something unclear

Contract reviews

Check specific obligations by “jumping around”

example: malloc() & free()

Artifact comparison

example: code & design, design & documentation

Checklist-based, State-machine-based, ...

fredag den 20 november 2009

Introducing SHR

How reviews are introduced is key!

Without proper motivation, practice will decline

IBM uses a “Pyramid scheme”

IBM Haifa experts, teaches local “champions”

“Champions” then teaches their peers & ensures
continuity

Teaching always based on reviewing actual artifacts

That persons being taught currently work with

“Must see value on their own problems”

fredag den 20 november 2009

Capture / Re-capture models

Idea: Estimate number of defects left based on overlap
More objective than alternative methods
Suited to processes with lots of reviews

fredag den 20 november 2009

Capture / Re-capture

Statistical method

Higher percentage of re-captures indicates smaller total

Many different estimators of remaining defects exist

Extensive empirical research shows:

Min 4 independent reviewers + min 6 defects => effective

Adding more reviewers or having more faults has no effect

60-70% of total defects need to be found

20% fault in estimates remains even after best practice used

fredag den 20 november 2009

Capture / Re-capture

fredag den 20 november 2009

Acceptance Tests for Clarifying Requirements

Study at two Italian universities, 30 students [1]

Goal: Evaluate effect of FIT tables on comprehension
level and effort

Compare:

Group 1: Textual requirements

Group 2: Textual requirements + FIT tables

Which group understood requirements best?

Which group spent most effort?

fredag den 20 november 2009

Acceptance Testing

Validating the systems behavior before release

Often informal - “Demo” for customer

Scenarios/User stories =>

Input/output sequences for main/alternative/
exceptional paths

FIT tables give customer easy specification format

fredag den 20 november 2009

Acceptance Testing with FIT tables

fredag den 20 november 2009

Acceptance Tests for Clarifying Requirements

Results:

FIT Tables gave 400% better odds at answering
requirements questions correctly

Same effort (i.e. no increased cost)

However:

FIT tables not suited to all requirements

Correct Wrong

FIT+Text 56 34

Text 25 65

fredag den 20 november 2009

Evaluations of Test-Driven Development

1. Industrial TDD users [2]

produced code that passed 18-50% more tests

took 16% more time

2. TDD use at IBM reduced defect density 50% [3]

Results from student experiments more mixed [1]

fredag den 20 november 2009

Automated White Box Testing

Microsoft Research: PEX

Parameterized unit tests (general tests, “laws”)

Generate test inputs/outputs showing interesting behaviors

Tech: Dynamic, symbolic execution

Instrument (byte) code, monitor path conditions

Constraint solver determines inputs for paths

Results:

Found non-trivial bugs in DotNet core libraries

fredag den 20 november 2009

Pex overview

From Microsofts “Overview of PEX” PPT

fredag den 20 november 2009

Automated Testing of Concurrent Programs

Microsoft Research: CHESS

Automatically find defects in multi-threaded prgrms

Finds: data races, deadlocks, hangs, data-corruption
access violations

Tech: Systematic exploration of thread schedules

Based on model checking

Results:

Found bugs in real-world, heavily stress tested software

fredag den 20 november 2009

Current study at SAAB / RUAG

Goal: More efficient V&V

So far:

Studied ECSS effects at Swedish Space Corporation

Will redo study here (survey + 17/12-18/12)

Please answer questionnaire asap if you have not already

Then / Ongoing / Tentative:

Fault-Slip Through (Ericsson & SAAB Microwave) applicable?

More test automation?

fredag den 20 november 2009

Statistics from ICST 2009

GUI (2)

Unit t. (1)

Non-
Func t. (1)

Security t. (5)

Testability
(1)

Web apps (3)

Mutation t.
(2)

Optimizing t. (3)

Creating t. (7)

Automating t. (5)

Coverage-
based t. (2)

Aspect
t. (1)

Real-time (3)

TTCN-3
(1)

Model-based t. (4)

Parallel
(1)

Service
(1)

Constraint-
based (1)

Estimation (2)

Static
analysis (1)

fredag den 20 november 2009

Testability in Practice

Testability concepts - SOCK model

Simplicity - simpler components

Observability - exposing state

Control - access to all parts

Knowledge of expected results - behavior correct

Not much progress in some time

Current proposals: Checklists based on SOCK

fredag den 20 november 2009

Example Testability Checklist: Observability

1. Can you write simple code that easily verifies result of your
test execution?

2. Can you programmatically detect state changes? Internal
state you cannot access?

3. In case of multiple options for inputs, can you easily
observe which particular option has been exercised?

4. Can you capture unexpected errors, warnings and
exceptions?

5. Can you easily analyze the test execution result to
determine pass/fail?

fredag den 20 november 2009

Test-Case Driven Inspection

Perspective-Based Reading technique for inspections

Perspective: Can (high-level) test cases be written?

Reader: Test engineer

Checks: Testability, Completeness, Conflicts

Testers often better at this than Req Engs

Study compared TCD with Checklist-Based Reading [5]

TCD found more major faults, but took longer time

Test cases could often be created in parallel

fredag den 20 november 2009

Research <-> Industry/Org

fredag den 20 november 2009

Agile RE practices in industry

Interviews with 54 practitioners in 16 companies [4]

Companies used variants of XP or SCRUM

Questions:

What RE practices do agile developers follow?

What benefits and challenges do these practices present?

fredag den 20 november 2009

Agile RE practices in industry

7 actual practices found:

Face-to-face communication over written specs

Iterative Requirements Engineering

Requirements Prioritization goes Extreme

Manage Req change w. constant planning

Prototyping

Test-Driven Development

Reviews & Acceptance tests

User stories, no formal docs Customer steers
Saves time

On-site customer
Customer groups

Lack of trust

High-level first, details in iterations Better customer relation
Clearer reqs Cost estimates

Minimal docs
Nonfunc Reqs

Recurrent prioritization Focus: business value Clearer view on reasons

Business value to narrow
Instability

Few & small changes Inappropriate architecture

Refactoring not enough

Quicker customer feedback Customers unrealistic about dev time

Tests capture reqsTests part of RE
Freedom / experimenting

Requires tight customer interaction
Devs unwilling

Reviews for Req validation Progress report to customer

Hard to develop ATs
QA personnel must help customer

fredag den 20 november 2009

Agile RE practices in industry

fredag den 20 november 2009

Papers

[1] Filippo Ricca, Marco Torchiano et al, “Using acceptance tests as a support for
clarifying requirements: A series of experiments”, Information and Software
Technology, In Press, Corrected Proof, Available online 8 February 2008.

[2] B. George, L. Williams, A structured experiment of test-driven development,
Information and Software Technology 46 (5) (2004), pp. 337–342.

[3] E. Maximilien, L. Williams, “Assessing test-driven development at
IBM”, Int. Conf. on Software Engineering, IEEE Computer Society Washington, DC,
USA, 2003, pp. 564–569.

[4] Lan Cao. B. Ramesh, “Agile Requirements Engineering Practices: An Empirical
Study”, IEEE Software, 25 (1), 2008, pp. 60-67.

[5] Dzamashvili-Fogelström, Gorschek, “Test-case Driven versus Checklist-based
Inspections of Software Requirements – An Experimental Evaluation”, 10th
Workshop on Requirements Engineering (WER’07), Toronto, 2007.

fredag den 20 november 2009

