Feature-Specific vs General Diversity:
A Tradeoff?

Robert Feldt, Chalmers & Gothenburg University,
Gothenburg, Sweden

robert.feldt@chalmers.se

@drfeldt on Twitter

) (
T“ {; 1 %9&9 ?‘{*
I;.‘:‘L f)\‘ . é
ol :“.\' i
AL ’f

mailto:robert.feldt@chalmers.se

Main message: There is a trade-off between two types
of DIVERSITY

Domain-specific

NID, NCD Feature-specific

General, even Universal Specific, problem adapted
Analysable (theory, math) Hard to analyse, no theorems
Simple & Cheap (to Human) ~Costly (to Human)

Costly (to CPU) Cheap (to CPU)
Needs more information Lean, directly applicable

Testing still (mainly) based on intuition & heuristics

“To better cover system behaviour, run different test cases”

“Don’t put all your eggs in one basket”, spread the risk

To formalise, analyse, automate etc we need to quantify!

NCD and it's extensions (NCDm) allows us to do this!

Information distance

Roughly speaking, two objects are deemed close if we can
significantly “"compress” one given the information in the
other, the idea being that if two pieces are more similar,
then we can more succinctly describe one given the other.

Already at ICST 2008 in Lillehammer...

C(zy) — min{C(z), C(y)}

NCD(z,y) = == axiC(@).C(u)

where C(s) is length of string s after being compressed
with your favourite compressor
(zlib, bzip2, ppm, blosc, [z4, zstandard, ...)

NCD in 5 lines of Julia code

Libz
compress(str) readbytes(ZlibDeflateInputStream(takebuf_array(IOBuffer(str))))
C(str) = length(compress(str))

lexorder(strs) = join(sort(strs), "")
ncd(x, y, ¢ = C) (c(lexorder([x, yl)) — min(c(x), c(y))) / max(c(x), c(y))

NCDm would be another ~15 lines to do the looping!

NCDm extension is very useful in testing!

Test Set Diameter (TSDm):
- Works for any test information / data type
- Inputs, Outputs, State, Traces...
- Measures distance of a whole multiset, not just pairs

- Empirical results shows that test sets selected by it
- Increases code and fault coverage

RQ2: Higher code coverage if select based on Input-TSDm?

e —
"
—

el

Avg. Test Set Size

I-TSDm Random
SUT 9% | 95% | 99% || 90% | 95% | 99 %
JEuclhd 299 | 40.9 | 90.3 || 82.2 | 135.3 | 217.3
NanoXML 1.9 19.4 | 75.1 18.7 | 38.2 | 207.2
ROME 9.1 21.7 | 31 21.9 | 51.0 | 129.0
9.8x

2.5x

A simple expression generator (for testing calculators)

dgenerator ExprGen begin

start () = expression/()
expression() = operand() * operator() * operand()
operand () = " (" * expression() * ")"
operand () = (choose (Bool) 2 "-=-" : "") %
join (plus (digit))
digit () = choose (Int,0,9)
operator () = "+"
operator () = "-"
operator () = "/"
operator () = "*"

end

30~

20~

2, Number of digits in datum

0-

Hillclimb (search)

@0 o
o o o
o) o/
@ o (o]
0 o
o o o 00
ooeo0 O 0@ O
o o000 00 o0 0
o000 o @00 o

[¢] o000 0@ (o}

oo 0o o) o000 o) o o) C
o000 0e0 o0 o000 o @0 e
ooe0 o0o0000 00 @00 @ o (o}

00000 OCONOPTODOOCOOOCODNOOYS o0 o0

o000 o000 00 o000 N) @00 o000 0

o000 000000 0COCOOGOONOGOOINOGONOTOONOSE OCODO o o O
L o000 o000 00 o000 00 e o) o000
000000200 OCPONONONOGOONOGINONONONONOINONONOGNONONOOD® O 000 0o o

00000 0000DOFOGNOIONOOGIOGINODONONONDONOODODODONOSOEONTOGOODOODDS e}

MCS (Search)Q.......Q.....OBahudﬁ!_:dhté

hillclimb-4-20, FSHC cov. = 53.8%

20 40
Length of datum

Number of digits in datum

30 -

20 -

10 -

0=

Length vs Num digits

TSDm selected, Size = 1, TSDm = 0.0%

L
20 40
[.ength of datum

Bl

Number of digits in datum

30 -

20 -

10 -

0=

Length vs Num digits

TSDm selected, Size = 2, TSDm = 49.3%

|]
2() 40)
| ,cngrh of datum

Bl

Number of digits in datum

30 -

20 -

10 -

0=

Length vs Num digits

TSDm selected, Size = 3, TSDm = 63.7%

|]
2() 40)
| ,cngrh of datum

Bl

Number of digits in datum

30 -

20 -

10 -

0=

Length vs Num digits

TSDm selected, Size = 4, TSDm = 74.8%

|]
2() 40)
| ,cngrh of datum

Bl

Number of digits in datum

30 -

20 -

10 -

0=

Length vs Num digits

TSDm selected, Size = 5, TSDm = 79.8%

|]
2() 40)
| ,cngrh of datum

Bl

Number of digits in datum

30 -

20 -

10 -

0=

Length vs Num digits

TSDm selected, Size = 10, TSDm = 88.2%

|]
2() 40)
| ,cngrh of datum

Bl

Number of digits in datum

30 -

20 -

10 -

0=

Length vs Num digits

TSDm selected, Size = 20, TSDm = 93.8%

I L
20 40
[.ength of datum

Bl

Number of digits in datum

30 -

20 -

10 -

0=

Length vs Num digits

[
o]
[e)
(@)] (w]
[e]
(o]
o O]
[X o)
a (e}
[a] @)
(o]
o)
(o] (]
(o]
TSDm selected, Size = 30, TSDm = 85.5%
0 40

[.ength of datum

Bl

Number of digits in datum

30 -

20 -

10 -

0=

Length vs Num digits

[
(o]
[e)
O] (w]
[e]
(o]
(w) O]
[X o)
e a (o)
[B] (@]
[a] o
(o) (o]
o)
L X X |
a
o] o
(] o
TSDm selected, Size = 40, TSDm = 96.4%
0 40

[.ength of datum

|
'l

Length vs Num digits

o
) -
o
o
o
= o o o
=
—
=
= o
=
= 20- 0
IA
iy (@] (@) o
ah
-
O [X e}
E o o o
2
= e« ®
=
pd o o
o o 0
o o
10 - ® ooo
I a
o o o
oo o o
o O

TSDm selected, Size = 50, TSDm = 97.1%

0-
I I |
) 20 40 A0
[.ength of datum

Length vs Num digits

30 -

o
o
o
= o o o
S
—
(an 4
- o
=
S 20- °
Z o o o
ah
-
[[X e}
E o IS o
2
g e« ®
= o o
o o o
o o
10 = ® oo0e
) o
eoe o
so o e o
ese oo e o
eee o o o 8]
°oe @ o o
® 00800
L X X J

TSDm selected, Size = 100, TSDm = 97.8%

0-
I ' |
) 20 40 60
[.ength of datum

Main message: There is a trade-off between two types
of DIVERSITY

Domain-specific

NID, NCD Feature-specific
General, even Universal Specific, problem adapted
Al Risk being ath) Hard to analyse, no theorems
Simip.c Enj(.).?,li.s.efv ..«Mman) ~Costly (to Human)

Risk hiding Risk of missing

p somefeatures 54 L important features |e

robert.feldt@chalmers.se

Feature space coverage (%)

55-

50 -

i =N
o
1

40 -

100

Tuner
hillelimb—4—-20

nmes—2—hatch

ames 2 direct

nmes—4—hatch

. nmcs—4—dircct

rand—freql

.-.
% 5 8.3

rand—mfreq10—LHS30
rand—mfregS-LHSI10

rand—once

200 500 1000 2000
Search Time (sec, log scale)

TSDm is already being applied by others :)

Comparing White-box and Black-box Test Prioritization

Christopher Henard

University of Luxembourg

Mike Papadakis
University of Luxembourg

Mark Harman
University College London

christopher.henard@uni.lu michail.papadakis@uni.lu mark.harman@ucl.ac.uk

Yue Jia
University College London

yue.jia@ucl.ac.uk

ABSTRACT

Although white-box regression test prioritization has been
well-studied, the mare recently introduced black-bax pri-
oritization approaches have neither heen compared against
each ather nar against mare well-estahlished white-hox tech-
nicques. We present a comprehensive experimental compari-
son of several test prioritization techniques, including well-
established white-box strategies and more recently intro-

duced black-box approaches. We found that Combinato-
rial Interaction Testing and diversity-hased techniques (In-
put Madel Diversity and Input Test Ser. Diameter) perform

best among the black-box approaches. Perhaps surprisingly,
we found little difference between black-box and white-box
performance (at most 4% fault detection rate difference).

faults to be high: the first 10% of the prlormzed test suites
already agree on at least 60% of the faults found. These are
positive findings for practicing regression testers who may
not have source code available, thereby making white-box
techniques inapplicable. We also found evidence that both
black-box and white-box prioritization remain robust over
multiple svstem releases.

Yves Le Traon
University of Luxembourg

yves.letraon@uni.lu

Although white-box techniques have been extensively stud-
ied over two decades of research on regression test opti-
mization [25, 30, 417, 65|, black-box approaches have been
less well studied 35, 36, 416]. Recent advances in black-box
techniques have [ocused on promoting diversity among Lhe
test cases, with results reported for test case generation |9,
16, I8, hO| and for regression test prioritization 14, 36, 56,
69]. However, these approaches have neither been compared
against each other, nor against more traditional white-box
techniques in a thorough experimental study. Therefare, it is
currently unknown how the black-bax approaches perform,
compared to each other, and also compared to the more
traditionally-studied white-box techniques.

Black-box testing has the advantage of not requiring source
code, therebyv obviating the need for instrumentation and
source code availability. Conversely, one might hypothesize
that accessing sonrce code information wonld allow white-
hox testing to increase source code coverage and, thereby,
to increase early fault revelation. It has also heen claimed
that whire-hox techniques can be expensive 49| and that the
use of coverage information from previons versions might de-
grade prioritization effectiveness over multiple releases [59].
These hypotheses and claims call out for a thorongh com-

RQ4: Higher fault coverage if select based on Input-TSDm?

/' ﬁ/_/_/ﬁ/

/

| Test sets on average 45% smaller
/ to reach 95% normalised fault coverage

Word of caution! Length of test case most important!

Kolmogorov wanted a measure for single objects

THREE APPROACHES TO THE QUANTITATIVE DEFINITION
OF INFORMATION

A. N. Kolmogorov
Problemy Peredachi Informatsii, Vol. 1, No. 1, pp. 3-11, 1965

There are two common approaches to the quantitative definition of "information": combinatorial and

probabilistic, The author briefly describes the major features of these approaches and introduces a new al-
gorithmic approach that uses the theory of recursive functions,

"Actually, it is most fruitful to discuss the quantity of information
‘conveyed by an object’ x ‘about another object’ y.”

As the "relative complexity” of an object y with a given x, we will take the minimal length I(p) of the “program”
b for obtaining y from x. The definition thus form ulated depends on the "programming method,” which is nothing other
than the function '

(P(P, 93) =Y,

Kolmogorov complexity of object x = K(x) = length of shortest
program to generate x (given no input)

The “Compression trick”

Kolmogorov complexity is extremely powerful in theory but
cannot be calculated in practice. Enter Cilibrasi and Vitanyi
with the Compression trick: Dl e

Rt "
' -
v T
~
S

Assuming a good, general compressor, ¢, with no “bias”,
we can approximate K(x) with C(x) = length(c(x)).

We can apply this trick to a large number of theoretical
results and formulas and get methods that often works
surprisingly well in practice.

Many sources of test case information

Tast Case
Execution

: dle didan :
\ ate change
05

Outcome (O)
Heturn values
OR

Outcome (EO)

Evaluation (E)

VAriability of Tests (VAT) Model of test information sources/types

Test Set Diameter:

Quantifying the

Diversity of Sets of Test Cases

Robert Feldt, Simon Pouldlng David Clark, and Shin Yoo

L DEPARTMENT

i % or sorTwart (S TTes W KAIST

TSDm = NCDm(subset of VAT info)

Tast Case
Execution

Goa's (G)

Empirical study here:
T Input-TSDm

—+— Jrace-1SDm

| T—> Output-TSDm

Evaluation (E)

Empirical study on Input-TSDm

Size (LOC) Language Measure
JEuclid MathML (XML) 11,556 Java Instruction Cov
ROME RSS/Atom (XML) 11,704 Java Instruction Cov
NanoXML XML 1,630 Java Instruction Cov
Replace 2 strings & 1 Regex 538 C Fault cov (seeded)

RQ1 - Correlation to code coverage: Are higher levels
of I-TSDm associated with higher levels of code coverage?

RQ2 - Structural coverage ability: Do test sets selected
based on I-TSDm lead to higher code coverage than randomly
selected test sets?

RQ4 - Fault finding ability: Do test sets selected based
on I-TSDm lead to higher fault coverage than test sets based

on random selection?

Conclusions of the TSDm study

- We proposed & evaluated Test Set Diameter

- General & Universal Measure for Diversity of Test Sets
- Works for any type of data and information source

- Family of diversity metrics

- Easy to implement but fairly slow

- BEvaluated TSDm on sets of test inputs
- One of the more ambitious tasks in testing

- Reduces test set size 2x to 10x compared to random

- Useful & important concept for SW Quality in general:
- Not only for automated test creation
- Also analyse manual test suites & tester behaviour

Conclusions

- Information theory can provide

- theoretically justified metrics for (automated) testing,
- practically useful (since universal) metrics that work for
any data type,

- new ways to formalise & understand testing problems.
- Goupling these metrics with search is powerful!

- It has helped us formalise, automate, and evaluate:
- Value of diversity In testing,
- Robustness testing,
- (soon In report) Boundary Value testing.
- Focusing on available information also has added value
INn Industry collaborations.

Searching for (Test) Diversity

Robert Feldt, Simon Poulding

v

.. DEPARTMENT
S LS OF SOFTWARE

&

. < ENGINEERING

Searching for test data with feature diversity

Robert Feldt and Simon Poulding

Chalmers University of Technology and Blekinge Institute of Technology
robert.feldt@chalmers.se, robert.feldt@bth.se,
WWW home page: http://wuw.robertfeldt.net

Abstract. There is an implicit assumption in software testing that more
diverse and varied test data is needed for eflective testing and to achieve
different types and levels of coverage. Generic approaches based on in-
formation theory to measure and thus, implicitly, to create diverse data
have also been proposed. [Towever, if the tester is able to identify features
of the test data that are important for the particular domain or context
in which the testing is being performed, the use of generic diversity mea-
sures such as this may not be sufficient nor efficient for creating test
inputs that show diversity in terms of these features. Ilere we investigate
different approaches to find data that are diverse according to a specific
set of features, such as length, depth of recursion etc. Even though these
features will be less general than measures based on information theory,
their use may provide a tester with more direct control over the type of

https://arxiv.org/abs/1709.06017

Method ChoiceModel Runs Coverage std Time Preferred
hillclimb — 4 — 20 RecDepthb 25 52.7 1.3 235.9 80.b
rand — mfreqb — LHS10 RecDepthb 25 52.5 0.5 519.4 65.7
rand — mfreql0 — LHS30 RecDepthb 25 52.3 0.5 348.7 66.8

rand — freql RecDepthb 25 52.2 0.5 980.1 61.9
rand — freql Default 10 49.1 0.82237.1 b1.1
nmcs — 4 — direct Default 25 464 1.6 217.6 62.4
nmcs — 2 — direct Default 20 454 1.2 231.3 61.9
nmcs — 2 — batch Default 20 45.2 1.2 234.3 61.5
nmcs — 4 — batch Default 25 a4.7 1.2 228.6 61.7
rand — once Default 20 39.6 0.4 265.2 64.0

Table 1. Descriptive statistics on the performance of the 10 investigated methods on
the 2-dimensional feature space of string length and number of digits for the ExprGen
generator. The ‘Runs’ columns shows the number of runs per method, ‘Coverage’ shows
the mean IF'SHC while ‘std’ is its standard deviation. Finally, ‘Time’ is the mean search
time in seconds and ‘Preferred’ is the ratio of samples that is within the preference
hypercube.

